亚马逊云科技-reInforce加强AI安全性保护AI应用程序模型数据GenAI
关键字: [yt, AI Runtime Security, ]
本文字数: 400, 阅读完需: 2 分钟
导读
来自Palo Alto Networks的演讲者Jamie Patel阐释了如何利用该公司新型AI安全产品,保护AI应用程序和模型。他探讨了AI快速被采用的现状,以及通过”安全设计”来保护AI的必要性,涵盖了员工访问生成式AI应用程序,以及保护企业构建的AI应用程序。该演示重点介绍了Palo Alto Networks的AI访问安全性、AI安全态势管理和AI运行时安全性如何实现对AI使用、基础设施、模型和数据的全面可见性、控制和保护,从而防范AI特有的风险,如提示注入、模型投毒和数据泄露等。
演讲精华
以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。
首先,它将为企业提供员工访问AI应用程序的全面实时可见性,包括他们访问的应用程序类别、用途等详细信息。其次,它将允许企业控制哪些员工和员工组可以访问哪些类型的AI应用程序。第三,一旦员工获得访问GenAI应用程序的许可,它将通过数据控制策略来保护企业的组织数据,防止员工通过ChatGPT或其他模型将企业的知识产权和敏感数据泄露给外界。据估计,目前约有57%的员工正在访问这些AI应用程序,其中一半员工正在使用风险性较高的GenAI应用程序。
AI Access Security将集成到亚马逊云科技的下一代防火墙平台中,包括硬件防火墙、软件防火墙和Prisma Access SaaS解决方案。这就是所谓的”平台化”含义。通过这种方式,员工可以安全地采用AI应用程序,获得更高的生产力,而企业也无需担心限制使用带来的风险。
接下来,讨论另一个使用场景,即保护企业为其客户、合作伙伴和员工构建的AI应用程序。例如,制药公司为研究人员和科学家内部使用而构建应用程序,以帮助他们更快推出新药物;全球证券交易所计划推出投资者智能应用程序,让人们可以询问是否应该投资于某家上市公司,并根据该公司向证券交易委员会提交的报告,提供经过总结的真实可靠信息;在线零售商正在开发应用程序,让用户可以轻松比较美国各家零售商的商品和服务价格;州政府客户则在构建应用程序,用于总结州参议院和其他机构通过的法律法规,并解释这些法规对各州机构的影响,以便制定相应的行动计划。
为了保护这些企业AI应用程序,亚马逊云科技推出了AISPM和AI Runtime Security两款产品。AISPM将帮助企业识别和修复基础设施安全风险、数据风险和供应链风险。AI Runtime Security则将保护企业的AI应用程序、模型和数据,免受AI特定风险或威胁,以及所有基础网络风险的影响。
AI Runtime Security产品的第一步是全面发现企业的整个AI应用程序生态系统,包括应用程序、模型、数据集、训练模型、互联网目的地以及访问AI应用程序的用户等。例如,在Hugging Face这个流行的开源AI模型平台上,已有60万多个模型,其中有40万个模型是在过去一年内发布的。该网站每天有100万次以上的模型下载量。一旦发现了这些组件,AI Runtime Security就会进行实时风险评估和识别,并提供优先级排序的可操作建议,以便企业能够有序地采取行动。
AI Runtime Security将保护企业的应用程序、模型和数据,免受AI风险和基础网络风险的影响。在应用程序保护方面,它将允许企业细分所有应用程序组件,并防御已知和未知的应用层攻击、恶意软件以及不安全的URL。在模型保护方面,它将防御直接和间接的提示注入攻击,以及模型拒绝服务攻击。对于数据保护,它将防止AI模型泄露数据,并支持预定义和自定义的数据模式,以及对发送到模型的敏感内容进行匿名处理。
AI Runtime Security将使用Amazon Bedrock等云服务提供商管理的模型,并支持CSP模型。它将通过网关负载均衡器架构在应用程序和模型之间拦截流量,以保护应用程序、模型和数据的安全。例如,一家医疗保健公司正在开发一款虚拟助理应用程序,该应用程序可能会使用来自Hugging Face的60万个模型中的一个,而这个模型可能存在高度漏洞。如果应用程序开发人员在部署到Amazon Bedrock等公有云环境时没有正确配置,就可能会将数据集暴露给攻击者,从而面临数据被投毒的风险。
在运行时,由于缺乏适当的分段,应用程序可能会面临远程代码执行、提示注入攻击、模型拒绝服务攻击等威胁,插件和代理也可能存在未经授权的通信和分段问题。举例来说,该虚拟助理应用程序可能会遭受提示注入攻击,导致敏感数据泄露,原因在于训练模型时可能会使用一些敏感数据。如果应用程序在响应用户提问时返回了恶意URL,那么员工点击该URL就可能面临风险,这将给企业带来声誉损失。另一种风险是,攻击者可能会伪装成银行经理等身份,通过精心设计的提示注入攻击来获取其他客户的敏感数据。此外,如果应用程序被训练用于回答有关患者症状治疗的问题,但由于训练数据中包含其他患者的个人身份信息,就可能会导致这些信息泄露给询问者。
传统解决方案无法很好地发现AI应用程序组件、部署容器化应用程序,也无法防御AI特定攻击。而AI RUNTIME SECURITY的方法则是通过全面的发现、轻松部署和精细的防御策略来解决这些问题。它可以发现应用程序、模型、数据、互联网目的地和用户,并通过网关负载均衡器架构在应用程序和模型之间拦截流量,从而实现细粒度的策略控制,防止提示注入、模型拒绝服务和数据泄露等威胁。
AI RUNTIME SECURITY产品提供了全面的AI运行时安全保护,具有出色的安全性和易用性。它支持数千种应用程序和协议,比传统Web攻击防护能力高出40%,可防御25多种DNS攻击,恶意软件检测准确率高达99%以上。在模型保护方面,它可以防御所有主要CSP管理的模型,防止直接和间接的提示注入攻击。在数据防泄露方面,它拥有1000多种预定义的数据模式,覆盖范围比任何其他云数据防泄露解决方案都要广。对于现有的Palo Alto Networks客户来说,只需扩展现有的网络安全平台即可实现AI的安全使用。
亚马逊云科技的STRATA CLOUD MANAGER平台将提供AI RUNTIME SECURITY的部署和管理功能。用户可以发现其AI应用程序生态系统的所有组件,包括应用程序、模型、互联网目的地、插件和用户。然后,用户可以轻松部署AI RUNTIME SECURITY实例来保护这些组件,并编写安全策略来防御提示注入攻击、模型拒绝服务攻击和数据泄露等威胁。该平台将提供全面的可视化,显示受保护的应用程序、模型流量、阻止的威胁以及需要采取的安全行动的优先级。
总之,亚马逊云科技的这些新安全产品旨在通过全面的方法来保护AI应用程序、模型和数据,支持企业安全地采用AI技术。客户可以扫描二维码试用这些产品,并表达对AI安全态势管理和AI RUNTIME SECURITY产品的早期使用兴趣,成为设计合作伙伴,帮助亚马逊云科技根据自身需求构建这些产品。
总结
人工智能采用先进的技术,目前已拥有超过250万用户,而且这一增长将持续呈现指数级增长。企业正在构建大量人工智能应用程序,因此需要采取有力的安全措施。
- 帕洛阿尔托网络(Palo Alto Networks)推出了三款产品——AI访问安全(AI Access Security)、AI安全态势管理(AISPM)和AI运行时安全(AI Runtime Security),旨在确保员工安全使用人工智能、保护人工智能应用程序开发生命周期以及保障人工智能数据的安全。
- AI运行时安全通过人工智能驱动的威胁防护和微分段技术,提供全面的保护,防范人工智能特有的威胁,如提示注入(prompt injection)、模型投毒(model poisoning)和数据泄露,同时也能防御传统网络威胁。
总的来说,这篇演讲强调了通过设计来确保人工智能安全的重要性,利用现有的网络安全平台(如帕洛阿尔托网络)来无缝扩展人工智能安全,从而使企业能够在采用和构建人工智能应用程序时,拥有强大的安全保障措施。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 -- 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。