亚马逊云科技-Neptune简化图形查询与GenAI
关键字: [yt, LangChain, Graph Database Integration, Large Language Models, Natural Language Queries, Schema Representation, Query Generation]
本文字数: 1200, 阅读完需: 6 分钟
导读
在这场演讲中,亚马逊云科技的主要图形架构师凯文·劳伦斯探讨了如何利用LangChain框架将Amazon Neptune图形数据库与大型语言模型相集成。他演示了LangChain如何根据自然语言输入生成图形查询,在Neptune上执行这些查询,并以人类可读的格式呈现结果。这种集成使用户能够使用自然语言与图形数据进行交互,而无需了解底层查询语言或数据架构。演讲重点介绍了这种集成如何允许构建生成式人工智能应用程序,利用大型语言模型的知识和存储在Neptune中的数据,实现诸如自然语言查询、数据探索和知识增强等功能。
演讲精华
以下是小编为您整理的本次演讲的精华,共900字,阅读时间大约是4分钟。
在云计算和人工智能领域,亚马逊云科技(Amazon Web Services)推出了一项突破性的集成,将其图形数据库服务Amazon Neptune与前沿的生成式人工智能框架LangChain相结合。这种创新方法旨在简化图形查询,并利用大型语言模型的强大功能,开启了与复杂数据结构进行自然语言交互的新时代。
会议由亚马逊云科技图形架构师Kelvin Lawrence主持。他首先介绍了Amazon Neptune,这是一种多功能的图形数据库服务,支持两种不同的数据模型:资源描述框架(RDF)和属性图。值得一提的是,Neptune提供了三种查询语言:SPARQL、Gremlin和OpenCypher,以满足不同用户的偏好和需求。Lawrence演示了如何使用Jupyter笔记本环境中的%load和%seed命令将数据加载到数据库中,展示了Neptune处理不同数据模型的灵活性。
为了说明一个实际的用例,Lawrence执行了一个OpenCypher查询,以检索与特定目的地(如阿姆斯特丹、JFK、东京成田和珀斯)有航线的机场,同时也检索包含这些机场的国家。查询的起点是伦敦希思罗机场(LHR),结果以可视化的方式呈现,揭示了复杂的航线网络、距离以及机场/国家的详细信息。值得注意的是,查询结果显示伦敦希思罗机场到珀斯的距离为9,009英里,为旅游和物流应用程序提供了宝贵的见解。
过渡到集成的核心部分,Lawrence介绍了LangChain,这是一个用于构建生成式人工智能应用程序的开源框架。他解释说,LangChain能够将大型语言模型与真实数据源(如Amazon Neptune数据库)相结合。这种集成使用户能够用自然语言提出问题,而LangChain会生成一个图形查询(如OpenCypher),从Neptune中检索答案。随后,模型将查询结果转换为自然语言响应,为用户在旅游、物流和运输等各个领域提供了无缝和直观的体验。
为了进行集成,Lawrence首先使用pip安装了LangChain,随后利用集群详细信息创建了一个Neptune图对象,并设置了一个以GPT-4作为语言模型的问答链。鉴于指导模型行为的重要性,他提供了严格的提示和规则,以确保生成的查询符合OPENCYPHER规范,仅利用提供的模式,而不依赖于模型本身的知识。
接下来,Lawrence提供了一系列展示LangChain-Neptune集成强大功能及其潜在应用的令人信服的示例:
- 当被要求查找从伦敦希思罗机场到珀斯的直线距离时,模型生成了一个OPENCYPHER查询来查找路径并检索距离属性,准确地返回了9,009英里的结果。这种能力对于航空业的旅行规划和路线优化可能是非常有用的。
- 为了确定是否存在从奥斯汀到悉尼的直飞航班,模型正确地返回了”否”,因为数据中没有直接路线。这一信息对于旅行社和航空公司向客户提供准确的航班选择可能是有用的。
- 查询从休斯顿到奥克兰的航线时,模型确认存在直飞航班,展示了它根据数据进行准确解释和响应的能力。这一功能可以帮助旅客规划行程并识别可用的航班连接。
- 当被要求统计从奥斯汀出发的航线数量时,模型生成了一个计数查询,返回了准确的98条航线数量。这种能力对于机场当局和航空当局分析和优化航线网络可能是有价值的。
- 在一个更复杂的场景中,Lawrence要求模型找出按出发航线数量排序的前10个机场,并提供机场代码和航线数量。模型应对自如,构建了一个复杂的查询来检索所需信息。这一功能可能对航空公司识别枢纽机场和优化航线规划策略有益。
在整个示例中,Lawrence强调了prompt工程的重要性,以及优化不同语言模型prompt的持续学习过程。他承认模型偶尔可能会偏离预期行为,例如注入自身知识或生成不完整的查询。然而,该集成整体性能出色,使用户能够使用自然语言与复杂的图形数据结构进行交互,而无需广泛的技术专长。
总的来说,Amazon NEPTUNE和LangChain的集成代表了一个重大进步,使图形数据的访问民主化,并利用生成式人工智能的力量。通过将强大的图形数据库与大型语言模型的自然语言能力相结合,亚马逊云科技为查询和分析复杂数据结构提供了更直观和用户友好的体验。随着prompt工程领域的不断发展,该集成的潜在应用范围广阔,涵盖了各个行业和领域,其中图形数据扮演着关键角色,包括旅游、物流、运输和航空等。
总结
在这场富有洞见的演讲中,亚马逊云科技主要图形架构师Kelvin Lawrence深入探讨了如何利用LangChain框架实现Amazon Neptune与大型语言模型之间的无缝集成。首先,他介绍了Amazon Neptune,这是一种支持两种数据模型(资源描述框架和属性图)以及三种查询语言(SPARQL、Gremlin和OpenCypher)的图形数据库服务。随后,Lawrence演示了如何将示例数据加载到Neptune中,并执行图形查询以可视化机场路线和连接。
演讲的核心重点是LangChain框架,这是一种开源工具,通过将大型语言模型与外部数据源相结合,促进了生成式人工智能应用程序的开发。Lawrence解释了LangChain如何让用户提出自然语言问题,然后由语言模型将其转换为图形查询。这些查询针对Neptune数据库执行,结果再转换回自然语言响应,从而为用户提供直观和友好的体验。
通过现场示例,Lawrence展示了这种集成的强大功能,允许用户查询机场之间的距离、检查直达航线、统计从特定位置出发的航线数量,甚至按出站航线数量排序检索前10个机场。他强调了提示工程的重要性,精心设计的提示可以指导语言模型生成准确和相关的查询,同时遵守数据库模式和查询语言约束。
最后,Lawrence强调了这种集成为复杂数据的民主化访问和使用自然语言与数据库交互带来的潜力,无需专门的技术知识。他鼓励观众探索LangChain框架,并利用大型语言模型和Amazon Neptune之间的协同作用,构建创新和用户友好的应用程序。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。