亚马逊云科技助力华宝新能源构建AI助手,提升客服团队效率

关键字: [innovate2024, Amazon Bedrock, 服务团队效率提升, 知识库优化, 自动化回复, 定制化解决方案, 人工智能应用]

本文字数: 2500, 阅读完需: 12 分钟

导读

在亚马逊 Innovate 会议上,来自华宝新能源的服务产品经理分享了他们与亚马逊团队合作,通过构建深层次 AI 助手来帮助客户服务团队提高效率的案例。他们发现在特定场景下会遇到咨询量激增的问题,因此决定利用亚马逊 Bedrock 服务快速构建 AI 助手,以较低的成本解决这一痛点。经过试运行和优化,AI 助手的采纳率达到 60% 以上,能够自动处理简单的订单查询、物流查询等问题,释放人力资源专注于复杂问题。未来,他们将继续与亚马逊合作,逐步提升 AI 助手的能力,实现从半自动到全自动的服务,为客户带来更好的体验。

演讲精华

欢迎来到亚马逊 INNOVATE 会议,我是来自华宝新能源的服务产品经理。今天,我很高兴有机会与大家分享我们与亚马逊团队合作,通过构建深层城市AI助手来帮助客户团队提高效率的实际案例。首先,我将简要介绍一下我们公司的情况。

华宝新能源是一家专注于储能行业的公司,成立于2011年,已有十多年的历史。自2019年以来,随着新储能业务的快速增长,我们的服务团队也在不断扩大,以满足日益增长的咨询需求。我们的主要产品包括储能电池和太阳能电池板。在海外市场,我们的品牌是JackRay,而在国内,大家或许更熟悉的是店小蜂品牌,在户外应用领域拥有广泛的用户群。此外,我们还有一个名为Generverse的家用储能品牌。我们拥有完整的产业链,从产品研发到生产,再到销售、营销、订单履约和售后服务,都是一体化运作,直接面向终端用户。因此,我们的服务团队遍布各个国家,支持多种语言,对于服务人员而言,对电池行业有深入的理解是必不可少的要求。

然而,在特定场景下,如促销期间,我们会遇到咨询量激增的问题。尽管我们的服务团队人手有限,但订单和咨询数量会大幅增加,这导致我们的响应时间延长,很多问题无法及时解决,用户体验下降。与此同时,我们还需要投入大量成本来吸引用户流量,但在这一阶段,由于首响时间的增加和用户体验的下降,会带来一部分用户流失。此外,服务团队也面临着更高的要求,虽然在促销期间,我们对服务水平的期望会提高,但除了增加人手之外,我们没有其他途径来帮助客服团队提高效率,解决实际问题。

通过分析,我们发现了几个主要问题。首先,我们的主要咨询渠道包括电子邮件、第三方站内信(如亚马逊)和官网在线聊天服务,这些都是基于文本的咨询方式。其次,我们发现约有70%的工单问题是相对简单的,一次性就可以解决。另一方面,我们也注意到,首响时间每增加两小时,用户满意度就会下降3%到5%,这一趋势在过去两年内一直存在,并且不分市场地区。最后,我们发现我们的知识库内容相对匮乏,很多用户无法通过自助方式解决问题,不得不求助于客服,这导致客服团队的大部分资源都被投入到处理这些基础简单的问题上。

总结以上数据并与团队沟通后,我们发现主要存在三个问题:首先,用户满意度随着首响时间的增加而降低,这是对客户团队绩效指标的最大挑战。其次,知识库内容不足,服务效率低下,很多用户不得不寻求客服帮助。最后,在大促期间,服务团队不得不增加人手来处理重复的简单问题,如订单取消或物流相关问题。

除了上述问题,我们还面临着其他挑战,比如用户对服务团队提出了新的要求,我们需要更好地了解用户面临的问题,并形成更好的解决方案。虽然当时我们没有做过多深入的分析,但我们认识到,至少需要先行一步,通过不断试错,找到提高AI助手带来的效率的方法。

最初,我们计划将现有知识库内容导入备份平台,结合客服系统,当用户提出问题时,AI助手会基于知识库自动生成答复。客服人员则通过标记答复是否采纳的方式,来识别AI助手的准确性。对于不准确的答复,将有专门的服务团队进行优化。整个过程的目标是了解我们知识库的缺失之处,并评估AI助手生成答复的质量。后续,如果用户提出的问题能被准确识别,并生成相对准确的答复,我们将逐步过渡到自动回复的模式。因此,当前阶段我们仍在对知识库内容的整理和答复准确性的校验过程中,通过这一优化形成良性循环,为后续自动化做准备。

在与亚马逊云科技团队接触之前,我们也考虑过使用第三方工具,但最终排除了这一想法。原因在于,知识库的构建并非来自工具,而是源于我们对用户问题的理解,以及服务团队对公司内部产品和服务流程的梳理,经过一定时间的沉淀才能形成较完善的知识库。因此,不管使用何种AI工具,我们都需要经历一个从知识库缺乏到逐步完善的过程,等到知识库达到一定程度后,我们才能更好地利用AI解决用户问题。所以,我们希望通过逐步构建这样的工具,不仅能为团队提供辅助,更重要的是在这个过程中,让团队优化知识库,找到问题所在。

当时,我们对比了自行构建辅助工具,还是基于亚马逊Bedrock构建的方案。通过估算开发周期、人力和基础设施成本等,我们发现使用Bedrock的成本会相对更低。根据实际测试,如果自有团队从头开发,包括原型设计、分析、开发和部署上线,预计需要20周左右。而与亚马逊团队合作,仅用了不到两周,我们就运行了一个演示版本。从人力和基础设施服务成本来看,使用Bedrock的费用也更低。考虑到当时我们对该项目的回报还没有很好的验证,出于谨慎,我们更倾向于先期小成本投入。因此,综合各方面分析后,我们最终决定与亚马逊团队合作,构建这一工具。

实际上,我们从2023年4月就开始与亚马逊团队就该项目进行沟通和洽谈。在6月,我们开始了试运行阶段,当时我们收集了所有用户问题和客服团队的反馈。在参与试运行的团队中,有40%的答复是可以直接使用的。第二阶段,我们希望能推广到所有团队使用,但发现准确率有所下降。这是因为每个人对答复的认知和要求不尽相同,会产生一些偏差,导致实际运行结果与我们的预期有所出入。不过,上线后,通过一些优化,整体使用率达到60%以上。

然而,在这个过程中,我们也遇到了一些问题。服务团队发现,很多答复并未达到他们的预期效果。经过分析,我们发现用户的问题五花八门,有一些基础简单的内容,通过知识库或文章就能解决。但也有很多涉及订单查询、物流查询、订单取消或修改等,需要借助第三方工具和接口来查询数据,才能生成答复。此外,一些故障排查和相对复杂的问题,也需要结合对用户问题的理解,才能给出更好的答复。因此,我们不能仅仅依赖知识库引用来解决所有问题。

另一个问题是,我们需要服务团队在标注答复时,给出反馈,指出哪些问题的准确率不高,需要通过何种方式来改进。因此,我们现在不再过多关注整体使用率,而是针对用户的问题做更详细的分析,评估每一类意图的答复采纳率,并对低采纳率的部分进行定向优化。

我们当前的策略是,保持大约60%的整体采纳率,同时逐步提高特定意图的采纳率,再逐步推广到其他团队。在这个过程中,我们遇到了三个主要挑战:

第一个挑战是服务团队的协同问题。虽然我们设定了整体目标,但由于实际情况与预期有差距,我们还没有达到理想的结果,因此需要通过调整来提高准确性。与此同时,服务团队也需要更多地参与进来。为了解决这一问题,我们抽调了一部分服务团队资源,专门负责数据分析和模型优化工作。他们将识别哪些问题的采纳率较低,找出原因,并给出改进建议。同时,我们也要求服务团队在处理流程上保持统一,以确保答复的一致性。

第二个挑战是数据分析工作量很大。我们大约有80到90个用户问题分类,如果要对所有分类的准确性都有较高要求,工作量将是巨大的。虽然有专门团队分析采纳率结果,但逐条审核每个数据的工作量依然很重。为此,我们调整了策略,利用AI进行自动比对,由人工审核答复是否可以直接加入知识库。同时,我们也会优先分析用户咨询较多、一次性解决率较高的简单问题,如常见的订单取消或物流查询,因为这些问题相对简单,AI处理会更及时高效,可以释放出人力资源,投入到后续的分析和优化工作中。

第三个挑战是特定意图的定制化需求。我们发现,最初对整体采纳率的要求过高,无从下手。因此,我们将重点放在咨询率较高、相对简单的问题上,比如涉及物流或订单查询的问题,我们会使用第三方系统对接,以提高准确性。通过这种方式,我们先针对热点问题,提高其准确率,释放出人力资源,再参与到知识库优化和分析中,形成一个相对良性的协同机制。

总的来说,我们目前所做的调整是:首先抽调专门团队负责数据分析和模型优化;其次,优先解决高频简单问题,利用AI自动化来释放人力;最后,对特定意图进行定制化处理,整合第三方数据接口,提高准确性。

在第一阶段中,我们主要关注了订单取消、物流查询和物流拦截等简单意图的优化,取得了一定成效,采纳率有所提升。我们将按照这种从单一团队试点,获得良好结果后,再逐步覆盖到全球团队的方式持续推进。我们希望在接下来的年度规划中,特别是第四季度,能够取得更好的效果。

最后,我想分享一下我们在自动化回复方面的一些计划。目前,我们已经可以处理物流查询、订单拦截等简单任务,但还有很多需要优化的地方,比如用户申请订单相关资料、报价单,以及产品推荐等。对于这些,我们将逐步替换处理方式,引入Agent调用第三方数据接口,识别用户问题,查询相关数据,最终生成符合用户实际情况的答复。这一部分我们正在逐步探索,并已取得阶段性成果。

后续,我们将继续与亚马逊云科技团队合作,从半自动的服务团队辅助答复生成,逐步过渡到完全自动化处理用户问题。通过这种方式,我们可以释放出客服团队的资源,投入到更多AI应用的推进中。以上是我的整个分享,再次感谢各位。

下面是一些演讲现场的精彩瞬间:

演讲者分享了与亚马逊团队合作利用城市AI助力客户团队提高效率的实际案例。

我们是一家集研发、生产、销售和服务为一体的储能电池公司,拥有多个品牌,服务团队遍布全球。

通过使用 Amazon Bedrock 服务,公司仅用了不到两周的时间就完成了一个原本预计需要20周才能完成的工具开发项目。

亚马逊Bedrock服务的成本相对较低,每月费用约为两三千元左右,对我们来说是更加友好的选择。

创新2024大会演讲中,演讲者分享了他们在推广新技术时遇到的挑战,以及为提高准确性和用户体验而采取的措施。

通过引入Agent和第三方数据接口,优化了用户查询订单、产品推荐等需求的处理流程,为用户提供更加贴合实际情况的答复。

通过与亚马逊云科技团队合作,探索AI辅助客服,提高服务效率,释放人力资源投入AI发展。

总结

亚马逊云科技在不断创新,为客户提供出色的服务。华宝新能源公司与亚马逊团队合作,利用深层城市AI助力客户服务团队提高效率,解决实际问题。该公司是储能电池和太阳能板的制造商,拥有全球服务团队。然而,在促销期间会遇到咨询量激增的挑战。通过与亚马逊的合作,他们构建了一个基于Amazon Bedrock的AI工具,用于自动回复常见问题,释放人力资源。

该工具目前可以自动处理订单取消、物流查询等简单问题,采纳率达60%以上。接下来,他们将优化知识库,针对热门问题提高准确性,并逐步扩展到更复杂的场景。这种先从简单问题入手,再逐步优化的策略,有助于团队高效利用AI技术,提升客户服务水平。

通过这一案例,华宝新能源公司认识到AI技术的潜力,并将继续与亚马逊合作,推进服务团队的自动化和效率提升。他们期望在未来能够更好地利用AI技术,为客户提供优质的服务体验。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值