亚马逊云科技-GenAI智绘数字工业设计方案

424019_智能产品行业论坛_智绘未来-云上数字工业设计方案助力企业提质增效

关键字: [出海日城市巡展, 生成式人工智能, 工业设计方案, 品牌内容资产, 数字化解决方案, 云上部署]

本文字数: 1300, 阅读完需: 6 分钟

导读

在这场演讲中,特赞公司的演讲者介绍了他们利用生成式人工智能(AI)为制造业和跨品类工业设计提供智能解决方案。他们的AI系统可以根据关键词生成各种风格的产品设计图像,如台灯、天花灯等,并可以生成产品背景和环境图。此外,AI还可以从线稿草图生成效果图,进行图像局部调整、扩展和优化等。演讲者还分享了制造业品牌如何利用AI开始数字化转型的步骤,包括建立品牌内容资产库、训练专有模型等。特赞的解决方案旨在帮助品牌实现内容生产和流转的数字化,并可通过亚马逊云服务满足出海需求。

演讲精华

以下是小编为您整理的本次演讲的精华,共1000字,阅读时间大约是5分钟。

在一场关于利用生成式人工智能(AI)在制造业和跨品类工业设计中应用可能性的分享中,演讲者代表的公司特赞(TakeDesign)自2015年在美国成立以来,一直专注于设计领域。最初,特赞为品牌方提供创意内容生产,通过一个创意供给平台,将创意内容拆分成SKU形式,并链接了5万多家创意方,为客户提供内容。在这一过程中,特赞开始对内容和供应商进行标记。

随着发展,特赞与联合利华等知名品牌建立了合作关系。据演讲者介绍,大约在2018年,特赞与联合利华的年度业绩已达2000多万元。联合利华对特赞管理众多创意方和内容的有序方式表示好奇,于是双方将数字资产管理(DAM)系统引入中国市场,而DAM在国外已被90%以上的企业采用。

特赞早在2016年就开始在人工智能领域布局,与同济大学合作成立了首个人工智能实验室,该实验室的研究人员现仍然在特赞办公。由于生成式AI的爆发,2023年4月11日,特赞获得了AIGC算法备案,可以合法合规地开展AI生成内容(AIGC)业务。与此同时,OpenAI的DALL-E被中国版本下架,使得很多公司无法继续使用。

演讲者分享了特赞在7大场景中利用生成式AI的应用。第一个场景是产品外观设计。通过输入关键词,如”台灯”、“超现实感”、“不锈钢材质”以及参考设计师Charles和Ray Eames的风格,AI可以生成符合要求的台灵外观图像。第二个关键词是”台灯”、“超现实感”、“黄铜材质”以及参考设计师Tom Dixon的风格,如其熔岩灯和碳系列作品。第二个场景是产品背景和环境图设计,AI可以根据不同颜色如翡翠绿、灰色、碳灰色、红色、金色、宝蓝色、蓝色和米色等生成多种背景选择。AI还可以生成多种材质,如水泥灰墙、木地板、马赛克墙面和瓷砖地面墙面。第三个场景是将线稿草图转化为效果图,AI可以进行线稿着色和控制,生成多种风格的效果图,如左侧整个汽车模型效果图。

第四个场景是模型叠加,以汽车客户为例,特赞先确定基础风格模型,再叠加细节增强、古风敦煌或电影质感等风格模型,从而得到精细化的调整模型。多模型叠加的优势在于结果会相对统一,如高端跑车风格的结果。第五个场景是产品背景扩充,AI可以智能填充背景,实现无限延展,如去年备受关注的”卖牛奶的女孩”画作的无限延展场景。第六个场景是图片局部调整,包括智能扩图、消除不需要的元素如车标Logo、抠图和分辨率优化4倍清晰度等功能。

第七个场景是商品图合成应用。演讲者展示了一个在线工具,用户可以上传商品图和参考场景图,输入提示词如”汽车在山间行驶”,工具会批量生成融合两种风格的商品图像。目前,该工具已为汽车、3C电子、电动车、家电、美妆和快消品牌等提供了大量预设场景模型。用户还可以通过特赞的Prompt模板编辑器,将参考图直接转化为提示词,从而更方便地使用该工具进行商品图合成。

为了帮助品牌利用AI生成内容,演讲者提出了5个步骤:确定目标(具象类或泛化类)、收集高质量数据(如产品白底图)、处理和标注数据、设置训练参数(如训练步数10张为一组)、测试并反馈效果。关键是构建结构化的品牌内容资产库,作为AI模型训练的基础数据。

以某汽车品牌为例,可能需要5万多张外部造型图片、3万多张内饰图片、2万多张静态场景图、5000多张动态场景图和5000多张不同颜色材质图片,以让机器更好地学习该品牌的特性。

特赞通过连接上游内容生产企业的数据和下游内容分发渠道,为品牌提供数字化解决方案,实现”N到N”的内容生产和分发。他们将接入通用大模型,并与亚马逊云科技合作实现全球云部署,助力品牌开拓海外市场。特赞的解决方案支持开放API对接,可连接多个上下游系统。

总的来说,这场分享全面介绍了生成式AI在工业设计和营销领域的应用前景,并为制造业品牌利用AI生成内容提供了实践指导,有助于企业提高效率,拓展全球市场。最后,演讲者分享了特赞和DAM系统的联系方式,以及个性化咨询的二维码。

总结

在当前人工智能生成内容(AIGC)的热潮中,特赞公司作为一家专注于设计领域的科技公司,正在利用其在AI和数字资产管理(DAM)方面的专长,为制造业和品牌客户提供创新的解决方案。通过将AI生成技术与结构化的内容管理相结合,特赞能够帮助企业高效地生产各种视觉内容,如产品设计、营销图像等,从而提高效率并释放创意潜力。

特赞的AI生成系统可以根据关键词和风格参考,生成符合品牌形象的产品外观、背景环境、效果图等,并支持多种风格和材质的叠加。同时,它还提供了图像扩展、局部编辑等功能,满足不同场景的需求。为了确保生成内容的质量和一致性,特赞建议企业构建自身的品牌内容资产库,对现有内容进行结构化管理,作为训练专有AI模型的基础。

通过与亚马逊云的全球部署相结合,特赞的解决方案可以满足品牌客户的出海需求。未来,特赞将继续在AI生成和数字资产管理领域深耕,为制造业和品牌客户提供更加智能化和高效的创意生产服务。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值