425006_游戏行业论坛_科技成就伟大游戏—生成式AI与游戏工业化
关键字: [出海日城市巡展, Amazon GameSparks, 生成式Ai, 游戏工业化, Ai模型, 云计算基础设施, 无服务器架构]
本文字数: 4600, 阅读完需: 23 分钟
导读
在这场演讲中,演讲者介绍了亚马逊云科技如何通过生成式AI、全球基础设施、无服务器架构等方式,帮助游戏开发者实现游戏工业化和全球化。他强调了生成式AI在游戏行业的应用前景,如NPC对话生成、舆情分析、辱骂识别等,并介绍了亚马逊云科技提供的不同规模AI模型以满足不同需求。此外,他还分享了亚马逊云科技与英伟达的合作,提供强大的GPU计算能力。在全球基础设施方面,亚马逊云科技拥有遍布全球的数据中心,能够为游戏开发者提供低延迟的游戏体验。无服务器架构则能够帮助游戏开发者降低运维成本,快速扩展游戏规模。最后,他分享了一些成功案例,如《猛兽派对》等独立游戏工作室如何借助亚马逊云科技实现全球发行。
演讲精华
以下是小编为您整理的本次演讲的精华,共4300字,阅读时间大约是22分钟。
尊敬的各位来宾,欢迎来到亚马逊云科技的出海全球化城市巡展上海站的游戏分论坛。我们今天分享的第一个内容是亚马逊云科技一直认为,我们的技术,尤其在游戏领域,对于许多拥有出色动手能力的游戏客户而言,我们强调科技本身的能力,这种能力可以帮助大家在出海时走得更稳更好。
首先,我们要讲到的是,大家可能在外界看到我们的一些宣传或各个分论坛的内容时,都会发现生成式人工智能(AI)是今年我们在技术领域非常非常重要的一个谈话重点。为什么会这样?相信大家都会有所了解。我引用的一个数据是,在2024年的Unity游戏引擎报告中,他们通过采访发现,62%的工作室都已经将生成式AI纳入到了生产的一部分。当然,程度或多或少不同,但他们都已经在AI方向上使用了一部分。比如一些快速的原型设计、构思,或者游戏资产的创建,本身都已经有很多客户在使用了。
实际上,前上两个星期我在广州转场时,也看到了像网易这样的客户,他们已经是非常强势地在使用这一块了。所以生成式AI的确是在技术方向上目前非常重要的一个点。为什么这几年,尤其是最近一年,我们会非常重视这个方向呢?其实这也是我们一直努力的一个方向。我们都知道,要做一个出海的好游戏,不仅出海了,包括做一个游戏,我们都希望可以多快好省地完成,给到玩家更好的体验。但在没有一个巨大的技术进步之前,同时做到这几件事情是几乎不可能完成的任务。
为什么现在我们觉得它可以呢?大家可能会想象一下,在100多年前瓦特发明蒸汽机时,它带来了第一次工业革命。现在无论是从技术界还是投资市场上,都会认为AI这个方向会是一个工业革命式的方向,它会带来第四次或第五次工业革命。一旦发生了这样的工业革命式技术进步,实际上它就能够同时满足”又好又快又省”地完成技术创新的方向。
这里我引用的一个数据是,在2023年10月的一份报告中,发现相比传统方式,AI可以带来30%的生产力提升。实际上这份报告是在2023年10月出来的,到今天你去看更多报告,绝大部分报告都会承认AI至少可以带来20%到30%的效率提升。在游戏行业这一点尤其明显,因为我们去年比较火的AI游戏资产生成、生图等,游戏在美术方向就有非常多可能。即使刚开始不能做高端美术,在中低端美术方面,比如市场宣传素材生成,已经是非常可以用到了。另外,比如策划与美术原画的沟通,相信绝大部分游戏工作室都已经在用了。以前策划要跟美术说”我要一个猪八戒飞在太空里的镜头,带不同装备”时,策划可能有很多想法但无法用语言表述清楚,这时通过AI就能非常好地做到。
所以亚马逊云科技一直在深耕游戏领域,我们与很多出海游戏开发者有技术上的协助。如果大家去跟踪我们这些年的分享,会发现我们一直在强调在构建、运行和增长游戏这几个方面,我们都有自己的解决方案。在AI方向,我们也将解决方案放到了相应领域里。比如我们反复提到的游戏资产创建,最简单常见且最麻烦的就是原画素材、美术资料生成,实际上还有代码辅助编写,很多开发者已在游戏上使用了。另外一块就是游戏智能体本身的产生,无论是AI自动生成的智能体,或者让AI生成游戏策划文案后由人工挑选,都有工作室在做。
在5月底,亚马逊云科技将在上海举办中国最大的一个峰会,在峰会上我们将有游戏Demo展区,至少有4、5款展示我们游戏智能体的Demo,其中就包括今天会后面分享的万希老师带来的狼人杀Demo。所以5月底也欢迎大家到会展现场体验。像平台运营产品提效也很有趣,现在已经有不少团队会把AI用于分析游戏日志或服务器日志,帮助发现历史趋势,后面将提到的远光84项目就会这样做。最后是产品提升,像分析产品报告、数据报表生成,现在都可以让AI参与进来,并且可以快速阅读大量以前的报表。因为现在绝大部分AI都有多模态能力,我们可以把以前的报表,无论PDF还是图片形式,都喂给它,然后再与当前数据做比对,这都是AI可以做到的事情。
大家可以看到,我们举了远光84的一个项目的例子。在这个项目里,他们使用了通用机器智能(GMI)去做他们后台的运维帮助,可以把后台的很多运维日志内容通过AI快速阅读出来,同时根据历史数据做分析。他们会把这些内容输入到飞书后台机器人里,让运维人员通过对答的方式分析客户体验。以前看报告,不同人可能有不同看法,现在可以让AI生成自己的看法,甚至做一个流程助手,这就是与游戏运营运维相关的内容。
另一个案例是我们的牧童,字节旗下的一个游戏,他们的做法是让AI去帮他们做舆情分析和聊天室辱骂识别。这两个内容方向很像,其实都是去看客户目前的一些态度和想法。对于舆情分析,他们的数据来源是自己的论坛数据,由于是舆情方向分析,所以他们是天级别收集和分析数据,会用我们较大的模型,像Soma或Opus模型。对于辱骂识别,因为他们是MOBA类对战游戏,聊天室经常有骂人情况,如果平台运营方放任不管,可能会造成客户流失,所以他们对骂人管理非常重视,需要亚秒级响应,因此使用了我们较小的Happy模型。可以看到,做类似事情时,会有不同需求,但一些要点又可以互相参考。
总的来说,如果我们真的要端到端地做完一个生成式AI,它是有很多关键路径需要做的。首先就是我们要找到合适的场景,分析业务上的痛点,看看当前AI能力是否可以解决,如果可以,我们再合理选择合适的模型。在做的时候,我们有中间有很多方法,这些是亚马逊云科技团队都非常有经验的,我们可以帮大家分析业务是否适合。尤其在出海时,我们可能无法完全了解每个地区的文化和法律要求,但生成式AI的大模型往往是用全球数据训练,相对来说更加通用。比如我要做一个西班牙语的黑帮游戏的NPC对话,可能就需要理解不同西班牙语地区的文化和梗。最后我们需要把这个部署在云端或就近地方,做推理和运行,这也是亚马逊的强项。
所以在亚马逊云科技上,我有10万家客户在做机器学习创新。对于亚马逊来说,我们CEO说过一个很重要的点,我们希望生成式AI是一个普惠的。刚才提到的远光84、牧童等,看似是一些大公司在做,但事实上,在亚马逊云科技当前框架下,我们的产品就是一个API调用,每次调用费用是零点几分钱级别。只要设计好游戏场景,任何中小企业都可以公平使用这种AI资源,这对于中小开发者来说是前所未有的能力。因为以前要做像舆情分析这样的系统,对中小开发者来说几乎不可能,但今天只要做好计划,就可以完成。
所以我们要做的第一件事就是做好底层硬件建设。我们知道,在AI场景下,最重要的资源就是计算资源,往往绑定到GPU上。去年亚马逊全球微影站大会上,华老板来与我们CEO握手,宣布亚马逊云科技和英伟达将合作提供服务。今天提到的这个2万多块GPU构建的超级计算集群,没有任何其他机房或云可以做到这样的网络吞吐能力。在今年3月,英伟达自己开了一个发布会,虽然重点是发布新GPU架构,但足足有十多分钟在讲述与亚马逊云科技的合作关系,并发布了相关通稿。里面专门提到,像GPU这样的领域,英伟达是非常强的,但要把GPU串联、并联使用在云上,就需要应用到我们的网络系统、安全系统等,才能让企业开发者安全、端到端地使用AI。
我们都知道,像GPT这样的产品,尤其是刚出来时,由于是非营利机构,很多想法并没有落实到企业客户真实痛点上,所以一开始企业用户并不敢用这样的云SaaS服务。所以亚马逊云科技在提供服务时,一开始就会提供这样的能力。另外就是我们的网络能力,这个2万多块芯片的集群,黄老板自己也说,这个能力实际上是为他们自己准备的,为中大型公司设计下一代GPU或大型模型。但出来后也可以普惠到每一位开发者。所以亚马逊云科技如果英伟达出了最新GPU,毫无疑问我们就可以通过产品,最快给全球客户提供服务。
这个是我们作为全球领先的云计算提供商该做的最底层服务。但除了硬件层,我们还提供了3层AI服务,给每一级开发者使用。硬件层的服务毫无疑问就是刚才提到的大规模硬件,可能真的只有大公司才能使用,因为成本非常高。但我们也会用一些开源模型,像拉马或我们的中文模型GMM,去做finetuning,提供相对底层的能力。在游戏行业,finetuning很常见,因为我们有时需要针对游戏环境,调整大模型的知识水平,或增强某些特定知识。
更多的中小型开发者会使用我们的后端服务,我们叫做Backends的这个能力。实际上是通过API调用的方式,以零点几分钱的价格,就可以调用我们当前的大语言模型能力,非常方便,即使在国内也可调用。当然不同场景需要不同调用方式,很多时候是为海外客户服务。在最上层,我们也会把部分能力打包成SaaS服务,比如AmazonQ,你在看任何亚马逊文档时,都有一个AI小助手辅助,可以直接问如何在特定环境下编写接口代码,它会免费提供。另一个就是AmazonCodeWhisperer,可以说是目前世界上第二强的代码辅助工具,对个人开发者永久免费使用。
所以我们的生成AI能力分了3层,最底层硬件、中间层的Backends,以及最上层的SaaS服务。在Backends这一层,我特别重点讲一下,它实际上是通过API调用的方式给到调用,这个API调用方式,相信研究过生成式AI的同学都会知道,比如OpenAI的那一套API,是目前整个开发界比较常用的调用方式。我们的API肯定也与之很相似,就这个点有点像我们的S3在云计算的地位。但实际上我们这个上面会有更多功能,比如内建检索、增强搜索,就是我们可以把公司内部自己的知识库作为生成内容,或者做多步骤的Agent。
再次强调的一点就是,我们所有服务最早设计时就是为企业服务而设计的,所以在安全性、隐私性、合规性方面做了很多考虑,大家可以放心把企业客户数据放到我们这里,肯定是独享的,我们也不会拿来做任何模型训练。
但说到模型的选择,我们上面也有非常多种。我们的CAR其实就是提到,亚马逊云科技认为不会有一款模型适合所有场景,虽然现在大模型的通用性很强,但它们确实有自己的不同方向。今天这个好的,我继续生成remaining内容:
今天这个幻灯片还没有更新,实际上我们新推出的拉马3模型目前已经上线到了我们的好几个区域,如果你不想在本地部署开源拉马3,也可以通过API调用的方式,在云上先去尝试一下拉马3。
我们还有一个非常主推的模型,就是Anthropic的CAR3这个模型。在今天,我们自己做的很多基准测试可以看到,CAR3在多模态的各方面能力里,基本上是能够达到甚至在很多方面都可以超越GPT-4的模型能力。并且这个也印证了我们不认为一个模型能适合所有场景的观点,包括CAR3,它也分了好几个模型,我们会详细地去说到。
另外一块会说到,我们认为即使在计费模式方面,在不同的业务领域下,也会有不同要求。第一个就是on-demand方式,这个大家非常熟悉,就像我们今天去调用ChatGPT,它就是按API调用、TOKEN数量来计费的,这在调试开发阶段是非常合理的。但一旦到线上业务时,这种方式可能就有弊端了。
举个例子,像我们前面提到的牧童,他们要支撑全球游戏的聊天室时,调用量就会变得非常巨大,而且要的返回速度也非常快,是亚秒级的,一旦发生卡顿或限流,在生产系统上是完全不能接受的。所以我们还会有预留资源的计费模型,就是你算出需要多大调用量和并发数,亚马逊云科技就会为你预留相应硬件资源,在要求并发数以内,我们就保证不会限流、延迟,而且还会给予折扣,因为你是固定使用。
另外就是不同的能力需要不同的模型。同样是CAR3模型,我们刚才说到它完全能打败GPT-4的能力,可能是在Opus这个模型上。但我们还有Soma和Happy两个中小型模型,从调用成本上看,它们就有数量级的差别。它们的速度差别也很大,如果要快速分析大数据包,Happy在亚秒级就能返回,对于像聊天室这种场景就非常合适。但Opus的返回速度就相对慢一些,因为它有更多逻辑思考。
所以在实际业务中,我们要分析哪些内容是比较快且逻辑性不太强的,可以用Happy模型,像带情感的翻译、当地文化翻译等,Happy模型就可以完成,而且非常快、省钱。逻辑性很强的,我们就可以交给Opus。但实际上绝大部分情况下都用不上Opus,它只是最强壮的模型。所以我们可以在业务线上选择不同模型,不会有一种模型能够打遍天下,因为还要算性价比,这也体现了我们对企业客户真实业务的理解。
好,讲了很多AI的东西,实际上亚马逊云科技是在全方位去帮助游戏开发者的,就像我们刚才提到的构建、运行、增长,这些东西在2024年,AI可能是一个很重要的方向,所以我花了大半时间在讲AI方向。但我们一直在帮助中国游戏做全球拓展,这是我们非常重要的业务。
所以我们的全球基础设施,也是全球游戏开发者选择亚马逊的一个重要原因。今天我们已经有30多个地区、105个可用区,而且每个区域我们都有自己的私有网络把它们连起来,很容易帮助游戏开发者做全球联网,尽可能降低每个地方的游戏延迟。
我们还有在很多区域部署的大模型,比如在美国总部的美东美西,欧洲的爱尔兰或法兰克福,亚太地区的新加坡和日本,大家都可以就近调用我们的AI模型。
今天有90%的大型游戏开发者都在使用亚马逊云科技的基础设施服务,其中包括索尼、任天堂、动视暴雪、EA、Epic Games等知名公司。Epic Games是我们非常重视的合作伙伴,他们在很多年前就一直在为我们站台,包括他们最拳头的游戏《堡垒之夜》,也是全面使用亚马逊云科技,用于提高游戏体验和支撑能力,尤其是在该游戏前几年非常火爆时的大型游戏直播、游戏包下载带宽、同时在线人数、后台Radius等,都需要像亚马逊云科技这种级别的云服务提供商才能支撑。
像最近一两年我自己支撑的比较大的项目,有暴雪和网易的《暗黑破坏神:无尽》手游版上线,这个全球100多个国家的榜一游戏,也只有亚马逊云科技这样的网络才能支持。对于网络硬件,我们当然很强,但你也可以看到,Epic的平台总监也会提到,在云端他们非常重视弹性的方式去节省成本。这一块在像《堡垒之夜》这样的吃鸡类型开房间游戏上展现得特别明显。比如在欧洲,他们可能在繁忙时需要上千台甚至数千台服务器支撑游戏房间运行,但凌晨时可能就只需要几台给夜猫子玩家使用。这样的弹性调节,如果用得好,是可以极大节省出海成本的。
我们知道很多中国游戏开发者被国内优良的基础设施所惯坏,出海时要面对全球各地资源分配不均的情况,需要做很多相应配置。今天可能没时间一一讲完,但这些大型游戏公司可以给我们很好的经验参考。
当然,我们与Epic Games在虚幻引擎等方面也有很多合作。很多中小的游戏开发商也在使用亚马逊云科技,比较著名的有《人狼杀》,他们把虚幻引擎与GameLift结合,通过弹性方式,让独立游戏开发者专心做游戏,在云端这块他们非常放心地交给亚马逊云科技这样的大型游戏云提供商,这也是一个非常有趣的案例。
Serverless这个词,其实在去年我们的re:re:Invent上就被反复提及。这个词我们在2015年就提出来了,Serverless的目的就是希望游戏开发者在开发和运行游戏时,无需关心服务器安装、操作系统、软件、安全补丁等,都可以交给云服务商。
漫威的SNE就是这样一款Serverless产品。这个团队的主创DD实际上是从炉石传说出来的,后来获得投资并拿到了漫威大IP,做了一款卡牌游戏。他们一开始就打算采用Serverless架构开发,最后这款数千万注册、每天数百万局的卡牌游戏,他们没有开任何一台EC2虚拟机,没有运维任何数据库,也没画任何VPC虚拟网络,就能支撑从0玩家开始的注册,全靠大量使用了无服务器计算技术。
他们中间用到了API Gateway、Lambda、DynamoDB等完全无服务器架构构造整个后台系统。他们也非常感激我们,在2023年的re:re:Invent上,我们的架构师秦海鹏与他们一起分享了这个成功案例,里面用到了很多产品。如果大家有兴趣的话,可以再跟我们联系,我们可以现场为大家深入分析这个案例。
这个案例的技术合作伙伴给了一个很好的评价,说亚马逊云科技可以帮助他们顺利拓展。他们的运维工程师,一个十几年老炮,也专门提到,一个游戏上线零运维事故,这在他十几年工作生涯中从未见过,就是因为使用了这样的Serverless架构。
除了这些海外游戏开发者,亚马逊云科技也帮助了很多中国游戏开发者,包括网易、37互娱、哈游等知名公司,还有《猛兽派对》这家Source Technology工作室。相信在座的各位对《猛兽派对》这款去年底非常火爆的游戏或多或少都有所耳闻。
实际上,在去年底之前的一年多,它在Steam的预发布上已经小有名气了。那时它们只是一个可以说是一穷二白的小型独立游戏工作室。开发出这么好玩的游戏时,他们完全不知道会这么火爆,一开始就是为必须联网对战而设计的。
无论你在哪个国家下载,进行对战时,后台都是使用亚马逊的GameLift服务。他们当时知道一定要对战,但并不知道如何在云端运行对战服务器、做匹配、运行后台,这些亚马逊云科技在两年前就开始帮助他们构建了。
包括他们当时在Steam上的内测,本来只发了5万个CDK,后来发现内测太火爆,就跟我们说能不能把架构放大,因为他们代码没改过任何一行,突然从5万就变成60万注册,我们做到了。所以他们的游戏成功,某种程度上也有亚马逊的一份功劳,最终他们在2023年底获得了PJ提名,虽然惜败于《尘埃》等巨型游戏,但作为小工作室已经非常成功了。
他们完全缺乏做后台的经验,亚马逊的工程师帮助了他们许多,帮他们做了真正的全球大规模游戏运营。因为大家知道,Steam是全球游戏,只要在上面够火就一定能全球卖出去,这个数据是公开的。
总结
游戏行业正迎来生成式AI的浪潮,这为游戏开发带来了前所未有的机遇。亚马逊云科技(亚马逊云科技)致力于为游戏开发者提供强大的AI能力,助力他们在全球范围内推广游戏。
生成式AI已成为游戏行业的重要趋势。亚马逊云科技与NVIDIA密切合作,提供领先的GPU计算能力,支持游戏开发者利用大型语言模型进行创新。亚马逊云科技提供了一系列AI服务和模型,涵盖从底层硬件到API调用,可满足不同规模开发者的需求,并确保安全性和性价比。
亚马逊云科技不仅在AI方面领先,还为游戏开发者提供全球基础设施支持。其庞大的云网络可实现低延迟游戏体验,而Serverless架构则大幅降低了运维成本。亚马逊云科技已帮助众多知名游戏公司如Epic Games、暴雪等实现全球发行,并助力中小开发者如Party Animals取得成功。
亚马逊云科技将持续普惠全球游戏开发者,提供创新的云计算和AI能力,推动游戏工业化进程,助力游戏开发者在全球范围内发光发热。