InternVL 部署微调实践

目录

基础任务

LMDeploy部署

网页应用部署体验

​XTuner微调实践

数据集下载

通过huggingface下载

​开始微调

与AI美食家玩耍

进阶任务

模型上传

​模型部署


基础任务

LMDeploy部署

网页应用部署体验

我们可以使用UI界面先体验与InternVL对话:

拉取本教程的github仓库GitHub - Control-derek/InternVL2-Tutorial

git clone https://github.com/Control-derek/InternVL2-Tutorial.git
cd InternVL2-Tutorial
conda activate lmdeploy
python demo.py

XTuner微调实践

数据集下载

通过huggingface下载

去huggingface下载此数据集:https://huggingface.co/datasets/lyan62/FoodieQA。该数据集为了防止网络爬虫污染测评效果,需要向提交申请后下载使用。

解压下载包

开始微调

运行命令,开始微调:

xtuner train internvl_v2_internlm2_2b_lora_finetune_food --deepspeed deepspeed_zero2

微调后,把模型checkpoint的格式转化为便于测试的格式:

python xtuner/configs/internvl/v1_5/convert_to_official.py xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_lora_finetune_food.py ./work_dirs/internvl_v2_internlm2_2b_lora_finetune_food/iter_640.pth ./work_dirs/internvl_v2_internlm2_2b_lora_finetune_food/lr35_ep10/

完成后文件夹如下 

与AI美食家玩耍

重新启动网站应用,微调前的效果,说肠粉是饺子

微调后的效果,进行了正确的识别

进阶任务(优秀学员)

将训练好的模型上传到 Hugging Face 或 ModelScope 上,模型名称包含 InternVL 关键词

模型上传

登录并创建model L2_InternVL,把微调好的模型传进去,然后推出

Pluto0616/L2_InternVL · Hugging Face

模型部署

创建一个Space,远程连接后编辑requirements.txt和app.py,配置和代码都是结合实际进行了修改的

部署后发现报错,提示Hugging Face 环境中没有检测到 NVIDIA 驱动或 GPU。这是因为咱用的是CPU basic免费版,等以后有机会在升级吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值