最快矩阵乘法:矩阵A的p次幂怎么求速度最快,Math根本没有求矩阵的幂次函数

最快矩阵乘法:矩阵A的p次幂怎么求速度最快,Math根本没有求矩阵的幂次函数

提示:重要的优化算法基础知识

上一篇,咱们求过数字最快速乘幂的方法(数字a的p次幂),
(1)最快乘法:普通数字a的p次幂怎么求速度最快,不用Math.pow(a,p)哦
那个知识点,你必须看懂,否则这个文章你看不懂!
那个知识点,你必须看懂,否则这个文章你看不懂!
那个知识点,你必须看懂,否则这个文章你看不懂!

现在:咱们要把a换成矩阵A,去求矩阵A的p次幂,在这你体验一下最快乘法的速度优势


题目

矩阵A的p次幂怎么求速度最快,Math根本没有求矩阵的幂次函数


普通矩阵A*B怎么求?Math也没有的,需要自己定义

很简单C【】=A【m行n列】×B【n行b列】
A的一行,×B的一列,求和,放在C的m行,b列
如下图,A的黑色一行,与B的所有列,乘完求和放在C的所有列
A的绿色一行,与B的所有列,乘完求和放在C的所有列
A的粉色一行,与B的所有列,乘完求和放在C的所有列
A的橘色一行,与B的所有列,乘完求和放在C的所有列
在这里插入图片描述
代码手撕:

    //C=A×B咋求
    public static int[][] matrixMul(int[][] A, int[][] B){
        int m = A.length;
        int b = B[0].length;
        int[][] C = new int[m][b];//A的一行,×B的一列,求和,放在C的m行,b列

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < b; j++) {
                //A的一行,×B的一列,求和,放在C的m行,b列
                int ans = 0;
                for (int k = 0; k < A[0].length; k++) {//是A的列哦
                    ans += A[i][k] * B[k][j];
                }
                C[i][j] = ans;
            }
        }

        return C;
    }


    public static void test2(){
        int[][] A = {
                {1,1},
                {1,1}
        };
        int[][] B = {
                {1,1},
                {1,1}
        };

        int[][] C = matrixMul(A, B);
        for (int i = 0; i < C.length; i++) {
            for (int j = 0; j < C[0].length; j++) {
                System.out.print(C[i][j] + " ");
            }
            System.out.println();
        }
    }

    public static void main(String[] args) {
//        test();
        test2();
    }

简单吧:

2 2 
2 2 

最快矩阵乘幂:利用数字a的p次幂的快速乘法,理解矩阵A的p次幂

咱们求过数字最快速乘幂的方法(数字a的p次幂),
(1)最快乘法:普通数字a的p次幂怎么求速度最快,不用Math.pow(a,p)哦
在这里插入图片描述
同样的思想,直接替换数字a为A,即可

我们看看是不是这个理?
初始化,跟上面一样,a=1,ans=I单位阵,t=10=a,tmp=A矩阵(基数)
然后,每次遇到p的x位是1,就需要给ans ×A的x位次幂——这句话可以不看你看图就知道了,能理解的。

初始化,a=I,t=A的1次方
(1)p的0位x=1:a=a×t=1×A的1次方=A的1次方,t=t×t=A的2次方
(2)p的1位x=1:a=a×t=A的1次方=A的1次方×A的2次方,t=t×t=A的4次方
(3)p的2位x=0:a=a×t=A的1次方=A的1次方×A的2次方 ,t=t×t=A的8次方
(4)p的3位x=1:a=a×t=A的1次方=A的1次方×A的2次方×A的8次方,t=t×t=A的16次方
(5)p的4位x=0:a=a×t=A的1次方=A的1次方×A的2次方×A的8次方 ,t=t×t=A的32次方
(6)p的5位x=0:a=a×t=A的1次方=A的1次方×A的2次方×A的8次方 ,t=t×t=A的64次方
(7)p的6位x=1:a=a×t=A的1次方=A的1次方×A的2次方×A的8次方×A的64次方 ,t=t×t=A的128次方
此时a已经是A的p=75次方了

在这里插入图片描述
看图其实已经明白了,咱们完全可以 以o(log§)的速度 搞定矩阵乘幂A的p次幂

手撕代码,搞清楚代码,你更理解上图的矩阵乘法实际上非常非常快

//矩阵A的p次幂
    public static int[][] powMatrixAitsPCiMi(int[][] A, int p){
        int m = A.length;
        int n = A[0].length;
        //初始化,a=I,t=A的1次方
        int[][] a = new int[m][n];
        for (int i = 0; i < m; i++) {
            a[i][i] = 1;//单位阵
        }
        int[][] tmp = A;//基数矩阵

        //(1)p的0位x=1:a=a×t=1×A的1次方=A的1次方,t=t×t=A的2次方
        //(2)p的1位x=1:a=a×t=A的1次方=A的1次方×A的2次方,t=t×t=A的4次方
        //(3)p的2位x=0:~~a=a×t=A的1次方=A的1次方×A的2次方~~ ,t=t×t=A的8次方
        //(4)p的3位x=1:a=a×t=A的1次方=A的1次方×A的2次方×A的8次方,t=t×t=A的16次方
        //(5)p的4位x=0:~~a=a×t=A的1次方=A的1次方×A的2次方×A的8次方~~ ,t=t×t=A的32次方
        //(6)p的5位x=0:~~a=a×t=A的1次方=A的1次方×A的2次方×A的8次方~~ ,t=t×t=A的64次方
        //(7)p的6位x=1:a=a×t=A的1次方=A的1次方×A的2次方×A的8次方×A的64次方 ,t=t×t=A的128次方
        //此时a已经是A的p=75次方了
        //看p的x位是否为1
        for(; p != 0; p >>= 1){//每次结束p往右移动1位,p=0结束
            if ((p & 1) != 0){
                //p最右那个x位=1,需要雷×结果
                a = matrixMul(a, tmp);//a=a*t
            }
            //每次t都需要倍次幂
            tmp = matrixMul(tmp, tmp);//t=t*t
        }

        return a;//返回a
    }

这思路,是不是完全,完全跟数字a的p次幂代码一模一样,只不过a最开始是单位阵,tmp是基数A矩阵而已
思路,做法,一模一样

测试结果:

    public static void test2(){
        int[][] A = {
                {1,1},
                {1,1}
        };
        int[][] B = {
                {1,1},
                {1,1}
        };

        int[][] C = matrixMul(A, B);
        for (int i = 0; i < C.length; i++) {
            for (int j = 0; j < C[0].length; j++) {
                System.out.print(C[i][j] + " ");
            }
            System.out.println();
        }

        System.out.println();
        int[][] D = powMatrixAitsPCiMi(A, 2);
        for (int i = 0; i < C.length; i++) {
            for (int j = 0; j < C[0].length; j++) {
                System.out.print(C[i][j] + " ");
            }
            System.out.println();
        }

    }



    public static void main(String[] args) {
//        test();
        test2();
    }
2 2 
2 2 

2 2 
2 2 

非常完美吧!!


总结

提示:重要经验:

1)矩阵A的p次幂,求法,代码完全跟数字a的p次幂的求法一模一样,一定要熟悉,熟练掌握,加速到o(log§),非常快
2)有了矩阵的A的p次幂,咱们后续还要解决类似斐波那契数列的矩阵快速解法,那速度就相当的快了,不用递归求。
3)笔试求AC,可以不考虑空间复杂度,但是面试既要考虑时间复杂度最优,也要考虑空间复杂度最优。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰露可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值