二叉树的Morris遍历:先序遍历和中序遍历
提示:本节来说二叉树的Morris遍历,面试的高超优化技能!
此前学的关于二叉树的概念,先序遍历,中序遍历,后续遍历(这仨统称DFS遍历)和按层的方式遍历(俗称BFS遍历)重要的基础知识:
【1】二叉树,二叉树的归先序遍历,中序遍历,后序遍历,递归和非递归实现
【2】二叉树的宽度优先遍历BFS:按层的遍历方式,请你用队列实现DFS,或者请你用栈实现BFS
【3】求二叉树中,包含的最大二叉搜索子树的头节点是谁,它包含的节点数量是多少
这仨文章,都是重要的基础知识,笔试的时候可以用
面试的时候,除了上面仨,咱们还可以说一下Morris遍历的优化技能
Morris遍历的基础知识,有了这个知识,你才能看懂今天的题目解法
【4】Morris遍历:与二叉树的递归遍历(DFS/BFS)不同,优化空间复杂度为o(1)
题目
二叉树的Morris遍历:先序遍历
本题涉及的二叉树和节点如下:
public static class Node{
public int value;
public Node left;
public Node right;
public Node(int v){
value = v;
}
}
//造树,长啥样呢:
// 1
// 2 3
// 4 5 6 7
public static Node createTree(){
Node head = new Node(1);
Node n2 = new Node(2);
Node n3 = new Node(3);
Node n4 = new Node(4);
Node n5 = new Node(5);
Node n6 = new Node(6);
Node n7 = new Node(7);
head.left = n2;
head.right = n3;
n2.left = n4;
n2.right = n5;
n3.left = n6;
n3.right = n7;
return head;
}
Morris遍历
Morris遍历的基础知识,有了这个知识,你才能看懂今天的题目解法
【4】Morris遍历:与二叉树的递归遍历(DFS/BFS)不同,优化空间复杂度为o(1)
Morris遍历的流程:
(0)cur默认最开始指向head,mR默认为null【即cur左树的最右节点】,判断cur是否有左树?
(1)cur如果没有左树,直接去右树cur=cur.right(当然没有右树那停止Morris遍历)
(2)cur如果有左树,先找到左树的最右节点mR
(3)如果(2)中mR.right=null,则让mR.right=cur,cur=cur.left
(4)如果(2)中mR.right=cur,则让mR.right=null,然后cur=cur.right
Morris遍历手撕代码:
//复习Morris遍历
public static void morrisReview(Node head){
if (head == null) return;
//【随时熟悉Morris遍历】**Morris遍历的流程:**
//(0)cur默认最开始指向head,mR默认为null【即cur左树的最右节点】,判断cur是否有左树?
Node cur = head;
Node mR = null;
while (cur != null){
//(1)cur如果**没有左树**,直接去右树cur=cur.right(当然没有右树那停止Morris遍历)
//没左树的,跟(4)联合精简代码
mR = cur.left;//mR走一步先
//(2)cur如果**有左树**,先找到**左树的最右节点mR**
if (mR != null){
while (mR.right != null && mR.right != cur) mR = mR.right;//往右穿
//(3)如果(2)中mR.right=null,则让mR.right=cur,cur=cur.left
if(mR.right == null){//打印cur,这是第1次见面
mR.right = cur;
cur = cur.left;
continue;//绕过(4)
}else {//打印cur,这是第2次见面
mR.right = null;//mR.right=cur,则让mR.right=null,然后cur=cur.right
}
}
//(1)cur如果**没有左树**,直接去右树cur=cur.right(当然没有右树那停止Morris遍历)
//(4)如果(2)中mR.right=cur,则让mR.right=null,然后cur=cur.right
cur = cur.right;//因为(3)那continue,不会来着,否则(1)和(4)都要来
//这里加不加else都行,但是先序打印可能需要加else,1面就要打印
}
}
用Morris遍历完成二叉树的先序遍历
之前我们用DFS搞过先序遍历:
【1】二叉树,二叉树的归先序遍历,中序遍历,后序遍历,递归和非递归实现
一个规则:
遍历在Morris遍历第1次见cur时打印,就是先序遍历【当然,没有左树就见1次,直接打印】
遍历在Morris遍历第2次见cur时打印,就是中序遍历【当然,没有左树就见1次,直接打印】
手撕先序遍历代码,直接在Morris遍历上修改
//复习Morris遍历——先序遍历
//复习Morris遍历
public static void preMorrisReview(Node head){
if (head == null) return;
//【随时熟悉Morris遍历】**Morris遍历的流程:**
//(0)cur默认最开始指向head,mR默认为null【即cur左树的最右节点】,判断cur是否有左树?
Node cur = head;
Node mR = null;
while (cur != null){
//(1)cur如果**没有左树**,直接去右树cur=cur.right(当然没有右树那停止Morris遍历)
//没左树的,跟(4)联合精简代码
mR = cur.left;//mR走一步先
//(2)cur如果**有左树**,先找到**左树的最右节点mR**
if (mR != null){
while (mR.right != null && mR.right != cur) mR = mR.right;//往右穿
//(3)如果(2)中mR.right=null,则让mR.right=cur,cur=cur.left
if(mR.right == null){
//打印cur,这是第1次见面
System.out.print(cur.value +" ");
mR.right = cur;
cur = cur.left;
continue;//绕过(4)
}else mR.right = null;//mR.right=cur,则让mR.right=null,然后cur=cur.right
}
//打印cur,没有左树的就打印这1次,有左树的这是第2次见面不打印的
else System.out.print(cur.value +" ");//这个else一定加上
//(1)cur如果**没有左树**,直接去右树cur=cur.right(当然没有右树那停止Morris遍历)
//(4)如果(2)中mR.right=cur,则让mR.right=null,然后cur=cur.right
cur = cur.right;//因为(3)那continue,不会来着,否则(1)和(4)都要来
//这里加不加else都行,但是先序打印可能需要加else,1面就要打印
}
}
上面这个else,要注意哦,咱第2次见面不打印,只打印第一次见面,因为我们把没有左树的情况,和第二次见面的情况融合了,所以需要在区分开无左树的情况,就必须打,因为这就是第一次见面
测试一把:
//造树,长啥样呢:
// 1
// 2 3
// 4 5 6 7
public static void test(){
Node head = createTree();
Node head2 = createTree();
preMorris(head);
System.out.println();
preMorrisReview(head2);
}
public static void main(String[] args) {
test();
}
先序遍历:头,左,右
1 2 4 5 3 6 7
1 2 4 5 3 6 7
用Morris遍历完成二叉树的中序遍历
之前我们用DFS搞过中序遍历:
【1】二叉树,二叉树的归先序遍历,中序遍历,后序遍历,递归和非递归实现
一个规则:
遍历在Morris遍历第1次见cur时打印,就是先序遍历【当然,没有左树就见1次,直接打印】
遍历在Morris遍历第2次见cur时打印,就是中序遍历【当然,没有左树就见1次,直接打印】
跟先序遍历类似,手撕先序遍历代码,直接在Morris遍历上修改
咱们第一次见面不打印,但是也要注意,没左树是就必须打印,由于没左树和二次见面的代码是融合的,所以就直接在融合地方打印就行
//复习Morris遍历——中序遍历
//复习Morris遍历
public static void inMorrisReview(Node head){
if (head == null) return;
//【随时熟悉Morris遍历】**Morris遍历的流程:**
//(0)cur默认最开始指向head,mR默认为null【即cur左树的最右节点】,判断cur是否有左树?
Node cur = head;
Node mR = null;
while (cur != null){
//(1)cur如果**没有左树**,直接去右树cur=cur.right(当然没有右树那停止Morris遍历)
//没左树的,跟(4)联合精简代码
mR = cur.left;//mR走一步先
//(2)cur如果**有左树**,先找到**左树的最右节点mR**
if (mR != null){
while (mR.right != null && mR.right != cur) mR = mR.right;//往右穿
//(3)如果(2)中mR.right=null,则让mR.right=cur,cur=cur.left
if(mR.right == null){
mR.right = cur;
cur = cur.left;
continue;//绕过(4)
}else mR.right = null;//mR.right=cur,则让mR.right=null,然后cur=cur.right
}
//打印cur,没有左树的就打印这1次,有左树的这是第2次见面打印,就是中序遍历
System.out.print(cur.value +" ");//这个else一定加上
//(1)cur如果**没有左树**,直接去右树cur=cur.right(当然没有右树那停止Morris遍历)
//(4)如果(2)中mR.right=cur,则让mR.right=null,然后cur=cur.right
cur = cur.right;//因为(3)那continue,不会来着,否则(1)和(4)都要来
//这里加不加else都行,但是先序打印可能需要加else,1面就要打印
}
}
测试一把:
//造树,长啥样呢:
// 1
// 2 3
// 4 5 6 7
public static void test(){
Node head = createTree();
inMorris(head);
System.out.println();
Node head2 = createTree();
inMorrisReview(head2);
}
public static void main(String[] args) {
test();
}
左头右就是中序遍历
4 2 5 1 6 3 7
4 2 5 1 6 3 7
没得问题的
总结
提示:重要经验:
1)Morris遍历,有左树,见面2次,没左树,见面1次,一定要熟练掌握Morris遍历的代码,核心思想
2)先序遍历,第一次见面就打印,中序遍历,第2次见面就打印,不论中序还是先序,没左树的,只会见1次,直接打印即可
3)笔试求AC,可以不考虑空间复杂度,但是面试既要考虑时间复杂度最优,也要考虑空间复杂度最优。