自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 收藏
  • 关注

原创 VMware16.0安装教程

2.打开解压后的文件夹,鼠标右击【VMware-workstation-full-16.0.0-16894299】选择【以管理员身份运行】。13.输入许可证密钥【ZF3R0-FHED2-M80TY-8QYGC-NPKYF】(以下可任意输入一组),点击【输入】。6.修改“文件夹名称”路径地址中的C可更改安装位置(我这里将C改为D表示安装在D盘),点击【确定】。】,点击【下一步】。1.鼠标右击【VMware16.0】选择【解压到VMware16.0】。4.勾选【我接受许可协议中的条款】,点击【下一步】。

2024-07-13 17:56:56 571 1

原创 Django入门三:静态资源和Ajax请求

- 加载静态资源- Ajax概述- 用Ajax实现投票功能

2024-07-03 21:15:46 614

原创 Django入门二:深入模型

- 关系型数据库配置- 使用ORM完成对模型的CRUD操作- 管理后台的使用- Django模型最佳实践- 模型定义参考

2024-07-03 21:12:34 1197

原创 Django入门一:Django快速上手

Python的Web框架有上百个,比它的关键字还要多。所谓Web框架,就是用于开发Web服务器端应用的基础设施,说得通俗一点就是一系列封装好的模块和工具。事实上,即便没有Web框架,我们仍然可以通过socket或CGI来开发Web服务器端应用,但是这样做的成本和代价在商业项目中通常是不能接受的。通过Web框架,我们可以化繁为简,降低创建、更新、扩展应用程序的工作量。

2024-07-01 00:50:19 1226

原创 深度学习常见的算法结构

RNN通过引入循环连接,使得当前时刻的隐藏状态不仅依赖于前一时刻的输入,还依赖于之前时刻的隐藏状态,从而捕捉到了序列中的长期依赖关系。长短期记忆网络(LSTM)和门控循环单元(GRU)是对RNN的改进,以解决梯度消失和爆炸问题。生成对抗网络(GAN):GAN由一个生成器和一个判别器组成,用于生成与训练数据分布相似的新样本。两者相互博弈,最终生成器可以生成高度逼真的合成数据,常用于图像生成、视频生成和数据增强等领域。卷积神经网络(CNN):CNN主要用于处理具有网格结构的数据,如图像和视频。

2024-06-27 13:02:25 462

原创 Python实现基于深度学习的电影推荐系统

接着,基础的协同过滤算法通过分析用户的历史行为,找出具有相似口味的用户,并推荐他们喜欢的电影给目标用户。该系统利用深度学习技术,根据用户的观影历史和偏好,为每个用户提供量身定制的电影推荐[1]。随着技术的不断进步,未来的电影推荐系统可能会更加智能化和个性化。数据集应包含用户ID、电影ID、用户对电影的评分以及其他相关信息,如电影类型、导演、演员等。此外,设计了高效的推荐服务,能够快速响应新用户和新评分,实现实时推荐[1]。最后,我们可以创建一个简单的用户界面,允许用户输入他们的偏好,并显示推荐的电影。

2024-06-23 22:30:16 828

原创 决策树学习

然后对每个子集继续重复这个过程,直到满足停止条件,如子集的纯度足够高或者达到预设的最大深度。通过从根节点开始,依据特征的取值沿着分支向下,最终到达叶节点得到决策。对于鸢尾花数据集,决策树可以根据花的特征(如花瓣长度、宽度等)来准确地对花的种类进行分类。对于波士顿房价数据集,决策树可以基于房屋的各种特征(如房间数量、面积等)来预测房价。决策树是一种直观且易于理解的机器学习模型,它通过一系列的规则或条件判断来做出决策。可以采用重采样技术,如过采样少数类或欠采样多数类,或者使用代价敏感的学习方法。

2024-06-22 19:15:36 1395

原创 机器学习之k最近邻分类

值,就相当于用较小的邻域中的训练实例进行预测,“学习”的近似误差会减小,只有与输入实例较近(相似的)训练实例才会对预测结果起作用;但缺点是“学习”的估计误差会增大,预测结果会对近邻的实例点非常敏感,如果近邻的实例点刚好是噪声,预测就会出错。值,就相当于用较大的邻域中的训练实例进行预测,其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。代表所有的训练实例的数量),那么无论输入实例是什么,都会预测它属于训练实例中最多的类,很显然,这样的模型完全忽略了训练实例中大量的有用信息,是不可取的。

2024-06-21 23:44:56 887

原创 人工智能和机器学习概述

所谓“人工智能”通常是泛指让机器具有像人一样的智慧的技术,其目的是让机器像人一样能够感知、思考和解决问题;而“机器学习”通常是指让计算机通过学习现有的数据,实现认知的更新和进步。显然,机器学习是实现人工智能的一种途径,这也是我们的课程要讨论的内容。

2024-06-21 23:42:12 55

原创 数据分析第十四讲:数据可视化入门(三)

- Seaborn- Pyecharts

2024-06-21 23:23:03 1186

原创 jupyter notebook 中使用ipython 魔法指令整理

魔法指令用于在 Jupyter Notebook 中直接安装 Python 包。这些魔法指令能够极大地提高在 Jupyter Notebook 中的编程效率和便利性。魔法指令使得在 Jupyter Notebook 中安装所需的包变得非常方便,无需切换到命令行进行操作。%%script:可以在单元格中运行其他编程语言的代码,如 Bash、Perl、JavaScript 等。%notebook:导出当前 notebook 的所有历史输入到一个文件中。%conda:在单元格中安装 Python 包。

2024-06-20 13:24:41 498

原创 数据分析第十三讲:数据可视化入门(二)

- 高阶图表 - 气泡图 - 面积图 - 雷达图 - 玫瑰图 - 3D图表

2024-06-20 01:40:39 796

原创 数据分析第十二讲 数据可视化入门(一)

- 安装和导入matplotlib- 创建画布- 创建坐标系- 绘制图表 - 折线图 - 散点图 - 柱状图 - 饼状图 - 直方图 - 箱线图- 显示和保存图表

2024-06-19 23:42:00 1165

原创 数据分析第十一讲:pandas应用入门(六)

类型的索引,那么你就很有可能要对数据进行时间序列分析,关于时间序列分析的方法和模型并不是本章节要探讨的内容,我们在其他的专栏中为大家分享。方法基于时间对数据进行重采样,相当于根据时间周期对数据进行了分组操作,分组之后还可以进行聚合统计,代码如下所示。方法指定一个时间频率来实现对数据的抽样,我们仍然以之前讲过的百度股票数据为例,给大家做一个演示。的方法,可以给索引指定一个顺序,分组聚合的结果会按照这个指定的顺序进行呈现,代码如下所示。三个参数即可,分别表示作为索引的数据、索引的数据类型和索引的名称。

2024-06-19 23:30:22 1265

原创 数据分析第十讲:pandas 应用入门(五)

- 计算同比环比- 窗口计算- 相关性判定

2024-06-17 13:22:11 1335

原创 数据分析第九讲:pandas 应用入门(四)

- 数据透视 - 获取描述性统计信息 - 排序和头部值 - 分组聚合 - 透视表和交叉表- 数据呈现

2024-06-17 13:12:27 1322

原创 python实战:将视频内容上传到社交媒体平台

TikTok没有公开的官方API,但你可能会找到一些第三方库或通过模拟登录和POST请求的方式来实现。这通常涉及到网络爬虫的技术,需要注意遵守各平台的服务条款。在Python中,上传视频到不同的平台可能需要使用不同的API和库。请注意,在实际应用这些代码时,你需要处理更复杂的错误检查、身份验证流程等。同时,请确保遵守每个平台的开发者政策和使用条款。: Bilibili提供了RESTful API,可以用来上传视频。首先,你需要从Google Cloud控制台获取API密钥,并安装。库发送POST请求。

2024-06-16 21:54:34 1061

原创 数据分析第八讲:pandas 应用入门(三)

- 数据重塑 - 数据拼接 - 数据合并- 数据清洗 - 缺失值 - 重复值 - 异常值 - 预处理

2024-06-16 19:43:50 1035

原创 数据分析第七讲:pandas应用入门(二)

- 创建`DataFrame`对象- `DataFrame`对象的属性和方法- 读写`DataFrame`中的数据

2024-06-16 19:30:43 775

原创 数据分析第六讲:pandas应用入门(一)

- 创建`Series`对象- `Series`对象的运算- `Series`对象的属性和方法

2024-06-16 19:28:40 850

原创 数据分析第五讲:numpy的应用入门(四)

NumPy的应用(四)向量向量(vector)也叫矢量,是一个同时具有大小和方向,且满足平行四边形法则的几何对象。与向量相对的概念叫标量或数量,标量只有大小,绝大多数情况下没有方向。我们通常用带箭头的线段来表示向量,在平面直角坐标系中的向量如下图所示。需要注意的是,向量是表达大小和方向的量,并没有规定起点和终点,所以相同的向量可以画在任意位置,例如下图中w\boldsymbol{w}w和v\boldsymbol{v}v两个向量并没有什么区别。向量有很多种代数表示法,对于二维空间的向量,下面几种写法都

2024-06-16 19:20:43 910

原创 数据分析第四讲:numpy的应用入门(三)

函数的第一个参数设置了两个条件,满足第一个条件的元素执行了乘以10的操作,满足第二个条件的元素执行了求平方的操作,两个条件都不能满足的数组元素会被处理为0。属性)是完全相同的,我们再来研究一下,两个形状不同的数组是否可以直接做二元运算或使用通用二元函数进行运算,请看下面的例子。NumPy 的数组跟数组也可以执行算术运算和关系运算,运算会作用于两个数组对应的元素上,这就要求两个数组的形状(函数的第一个参数给出了条件,满足条件的元素执行了乘以10的操作,不能满足条件的元素执行了求平方的操作。

2024-06-15 23:28:52 856

原创 数据分析第三讲:numpy的应用入门(二)

all()any()方法:判断数组是否所有元素都是True/ 判断数组是否有为True的元素。astype()方法:拷贝数组,并将数组中的元素转换为指定的类型。reshape()方法:调整数组对象的形状。dump()方法:保存数组到二进制文件中,可以通过 NumPy 中的load()函数从保存的文件中加载数据创建数组。array3tofile()方法:将数组对象写入文件中。fill()方法:向数组中填充指定的元素。flatten()方法:将多维数组扁平化为一维数组。nonzero()

2024-06-15 23:22:28 657

原创 数据分析第二讲:NumPy的应用入门(一)

关于索引运算需要说明的是,切片索引虽然创建了新的数组对象,但是新数组和原数组共享了数组中的数据,简单的说,无论你通过新数组对象或原数组对象修改数组中的数据,修改的其实是内存中的同一块数据。花式索引和布尔索引也会创建新的数组对象,而且新数组复制了原数组的元素,新数组和原数组并不是共享数据的关系,这一点可以查看数组对象的。对象可以进行索引和切片操作,通过索引可以获取或修改数组中的元素,通过切片操作可以取出数组的一部分,我们把切片操作也称为切片索引。布尔索引就是通过保存布尔值的数组充当一个数组的索引,布尔值为。

2024-06-15 23:16:06 833

原创 Python环境准备

安装Anaconda,或者pip安装jupyter 工具入门数据分析

2024-06-15 23:01:02 596

原创 数据分析第一讲:数据分析概述

当今世界对信息技术的依赖程度在不断加深,每天都会有大量的数据产生,我们经常会感到数据越来越多,但是要从中发现有价值的信息却越来越难。这里所说的信息,可以理解为对数据集处理之后的结果,是从数据集中提炼出的可用于其他场合的结论性的东西,而从原始数据中抽取出有价值的信息的这个过程我们就称之为数据分析,它是数据科学工作的一部分。数据分析是有针对性的收集、加工、整理数据并采用统计、挖掘等技术对数据进行探索、分析、呈现和解释的科学。

2024-06-15 22:49:38 1316

原创 一篇文章玩转Linux操作系统,熟悉常用shell命令教程

文章详细介绍Linux的起源,发展历程,用丰富的案例实操每个shell 命令,讲解详细,更快学会Linux

2024-06-15 22:11:29 916

原创 什么是AIGC?

其发展大致可以分为三个阶段:早期萌芽阶段(20世纪50年代至90年代中期)、沉淀积累阶段(20世纪90年代中期至21世纪10年代中期)、快速发展阶段(21世纪10年代中期至今)。它是指利用人工智能技术自动生成内容的新型生产方式,既包括从内容生产者视角进行分类的一类内容,也是一种内容生产方式,还是用于内容自动化生成的一类技术集合。AIGC 可以在对话、故事、图像、视频和音乐制作等方面,打造新的数字内容生成与交互形式,广泛应用于媒体、电商、影视、金融、医疗等多个行业。

2024-06-14 10:23:16 419

原创 AI方向最新资讯每日必读

苹果股价上涨的原因包括市场对 AI 潜力的看好、投资者对苹果的信心、与 OpenAI 的合作、竞争对手的压力和市场情绪的影响等。还探讨了生成式 AI 对数据中心、边缘运算、智慧城市和智能车等领域的影响,如数据中心的算力需求重塑、边缘运算在降低数据壅塞等方面的作用、智慧城市中 AI 带动设备商机及智能车中智能驾驶系统应用 AI 带来的变化等。文章指出,美国顶级 AI 人才主要是华人,且华人在 AI 初创公司中的表现出色,涉及领域广泛,视频生成领域尤为突出。文章还提到了华人创业面临的挑战和机遇。

2024-06-14 10:16:20 610

原创 numpy 入门教程

Numpy 是 Python 中一个非常重要的科学计算库,它提供了多维数组对象、派生对象(如掩码数组和矩阵)以及用于快速操作数组的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅立叶变换、基本线性代数、基本统计运算、随机模拟等等。这只是 Numpy 的一些基础用法,Numpy 的功能非常强大,可以进行更复杂的数学和科学计算。你可以查看官方文档或在线教程来获取更详细的信息和高级用法。

2024-06-13 23:41:26 241

原创 Pandas简单快速入门教程

在开始使用Pandas之前,您需要确保已经在您的计算机上安装了Pandas库。- `Series`是一维的数据结构,类似于Python的列表,但是它可以包含不同类型的数据,并且每个数据项都有一个索引。- `DataFrame`是二维的数据结构,类似于Excel表格,它可以包含多列数据,每列可以有不同的数据类型。以上是Pandas的一些基本用法,通过这些示例,您应该能够开始使用Pandas进行数据处理和分析。Pandas提供了两种主要的数据结构:`Series`和`DataFrame`。

2024-06-10 21:45:21 801

原创 探讨人工智能的广泛应用带来的影响以及相应的思考

首先,教育体系需要进行改革,培养适应人工智能时代的新型人才,让人们具备与人工智能协作的能力。同时,我们不能过度依赖人工智能,而应保持人类的判断力和决策能力,确保技术始终为人类的福祉服务。另一方面,也引发了数据隐私和安全的担忧,大量的数据被收集和分析,若保护不当,可能会造成严重的后果。我们要以理性和审慎的态度去拥抱它,充分发挥其优势,同时积极应对可能出现的问题,让人工智能与人类社会和谐共生、共同发展。在当今科技飞速发展的时代,人工智能以其强大的力量,广泛地渗透到了我们生活的各个角落。

2024-06-09 03:12:26 210

原创 浅谈人工智能在各个领域中的应用

人工智能在医疗领域有着广泛的应用,包括疾病诊断、个性化治疗、药物研发、医学影像分析等方面。:在金融领域,人工智能被广泛用于风险管理、欺诈检测、股票交易预测、信用评分等方面。:人工智能在教育领域的应用包括个性化教育、智能辅助教学、在线学习平台等。:人工智能在交通领域可以用于交通优化、智能交通管理、自动驾驶技术等。:人工智能在零售领域的应用包括推荐系统、库存管理、客户服务等。这些只是人工智能在各个领域中应用的一部分示例,随着技术的不断发展,人工智能在更多领域将会有更多创新的应用。

2024-06-05 23:56:14 292

原创 如何从0开始学习人工智能

通过实战项目加深对人工智能的理解和掌握,如OpenCV图像识别项目、文本分类项目、语音识别项目、强化学习游戏项目等。学习NumPy、Pandas、Matplotlib等Python库,这些库用于矩阵计算、数据处理和数据可视化等。将所学到的人工智能技术应用到自己的项目中,深入理解和掌握机器学习和深度学习的过程和应用。了解人工智能的分类和应用领域,如计算机视觉、机器学习、自然语言处理和强化学习等。学习人工智能的基础算法,如线性回归、逻辑回归、决策树、随机森林和深度神经网络等。第二步:学习人工智能的基础知识。

2024-06-05 23:30:33 159

原创 我国人工智能-大模型的发展现状

10.昆仑万维:推出了天工Skywork大模型,这是一款开源且可商用的大模型,包括Skywork-13B-Base模型、Skywork-13B-Chat模型等。1. **技术范式革新**:大模型的崛起源于深度学习的技术范式革新,特别是Transformer架构的广泛应用,推动了模型规模的扩大和性能的提升[1]。6.华为:推出了盘古大模型,这是一款完全面向行业的大模型,包含L0基础大模型、L1行业大模型及L2场景模型三层架构。二、国内大模型的主要厂商和产品。一、国内大模型的发展概况。

2024-06-05 23:09:28 550

原创 领域大模型和通用大模型的训练过程有何不同?

相比之下,通用大模型使用的是广泛的、覆盖多个领域的数据集,这些数据集可能来源于公开的网络资源,如维基百科、书籍、网页等,旨在捕捉人类知识的广泛分布[1][2]。综上所述,领域大模型和通用大模型在训练过程中的主要差异在于数据集的选择、模型的定制化程度、训练方法的复杂性以及模型的应用场景。由于领域大模型需要处理特定领域的数据,其训练方法可能会更加复杂,需要考虑数据的特殊性和领域知识的整合。领域大模型和通用大模型在训练过程中的主要差异体现在数据集的选择、模型的定制化程度、训练方法的复杂性以及模型的应用场景。

2024-06-05 22:06:53 271

原创 Devops是什么?

这种方法强调团队之间的沟通与协作,以及技术自动化,以提高软件开发和部署的效率和质量。综上所述,DevOps 是一种注重协作、自动化和持续改进的软件开发和运营方法,它正在不断地演变和发展,以适应不断变化的技术和市场需求。3.持续集成和持续交付(CI/CD):自动化代码的集成和部署过程,确保新代码的快速、频繁和可靠地集成到主代码库中。2.技术挑战:自动化和工具的选择和实施需要专业知识,可能需要时间和资源来学习和适应。2.增加稳定性:自动化的测试和部署减少了人为错误,提高了系统的稳定性和可靠性。

2024-06-05 17:47:50 550

原创 机器学习的学习方式

学习过程包括建立预测模型,将预测结果与“训练数据”的实际结果进行比较,不断调整预测模型,直到模型的预测结果达到预期的准确率。直推学习则假设未标记的数据就是最终要用来测试的数据,学习的目的就是在这些数据上取得最佳泛化能力[3]。在线学习是指学习过程按顺序处理数据,模型生成后即可投入运行,随着更多训练数据的到来,模型将不断更新。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。迁移学习是指一种学习对另一种学习的影响,它广泛地存在于知识、技能、态度和行为规范的学习中。

2024-06-05 16:16:29 271

原创 什么是机器学习

机器学习算法使用训练数据(经验)来训练模型,模型用于完成特定任务(如分类、回归、聚类等),而性能指标(如准确率、召回率、F1分数等)用来衡量模型在任务上的表现。机器学习的发展经历了早期探索、符号主义、连接主义、机器学习与统计学的融合,以及大数据与深度学习等阶段。近年来,随着互联网和计算能力的快速发展,大数据和深度学习成为机器学习领域的主流方向,深度学习算法在图像识别、自然语言处理等领域取得了重大突破[2]。机器学习面临的挑战包括数据质量、模型的泛化能力、计算资源的消耗等。八、 机器学习的挑战和前景。

2024-06-05 15:47:14 489

原创 ChatGPT的发展历程

此外,OpenAI还推出了ChatGPT Edu版本,这是一个专门为大学校园提供的版本,支持GPT-4、网络搜索、自定义GPT、数据分析、代码生成等功能,以提升学生的学习效率和体验。(3)带有网络搜索功能的GPT-4版本:除了GPT-4的所有功能外,还具有访问互联网的额外功能,可以实时获取知识库之外的信息,但在2023年7月因被滥用而暂时禁用了浏览功能。(2)GPT-4版本:这是目前与ChatGPT集成的最先进的GPT模型,适合进行更复杂的任务,如数学运算、创作内容等,但有消息数量的限制。

2024-06-05 15:39:02 804

java算法题指导手册

牛客网、力扣真题整理解析,java笔试指南

2024-06-23

大学常用数据库设计建库建表语句整理,以及pymysql连接数据库应用案例

大学常用数据库设计建库建表语句整理, 涵盖教学管理系统、订单管理系统、共享单车管理系统、员工管理系统、商城管理系统等 一个python程序pymysql连接数据库对手机联系人进行增删查改操作的应用案例,充分体会数据库应用设计的思路和方法

2024-06-17

写一个最简单的深度学习案例:用神经网络算法预测中国的GDP总量

以下是一个简单的使用神经网络算法进行预测的示例代码,这里使用 Python 的TensorFlow库来构建一个简单的全连接神经网络来预测一个线性函数的值。 本文主要目的是让初学者直观地看到神经网络是如何构建的,包括不同层的设置和神经元数量的选择,初步建立对神经网络结构的认知。熟悉从数据准备、模型定义、编译到训练和预测的整个流程,了解每个环节的作用和相互关系。另外通过接触TensorFlow 这样重要的深度学习库,学习其基本的函数和方法的使用,为后续深入学习打下基础。

2024-06-09

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除