D. Yet Another Minimization Problem

题目D. Yet Another Minimization Problem

参考题解:大佬博客

考点:数学公式转换 + 背包
∑ i = 1 n ∑ j = i + 1 n ( a i + a j ) 2 = ( a 1 + a 2 + ⋅ ⋅ ⋅ + a n − 1 + a n ) 2 + ( n − 2 ) ( a 1 2 + a 2 2 + ⋅ ⋅ ⋅ + a n − 1 2 + a n 2 ) = ( n − 2 ) ∑ i = 1 n a i 2 + ( ∑ i = 1 n a i ) 2 \sum_{i=1}^{n}\sum_{j=i+1}^{n}{(a_i + a_j)^2} = (a_1 + a_2 + ··· + a_{n-1} + a_n)^2 + (n - 2)(a_1^2 + a_2^2 + ··· + a_{n-1}^2 + a_n^2) = (n-2)\sum_{i=1}^{n}{a_i^2} + (\sum_{i=1}^{n}{a_i})^2 i=1nj=i+1n(ai+aj)2=(a1+a2++an1+an)2+(n2)(a12+a22++an12+an2)=(n2)i=1nai2+(i=1nai)2

∑ i = 1 n ∑ j = i + 1 n ( a i + a j ) 2 + ∑ i = 1 n ∑ j = i + 1 n ( b i + b j ) 2 = ( n − 2 ) ∑ i = 1 n a i 2 + ( ∑ i = 1 n a i ) 2 + ( n − 2 ) ∑ i = 1 n b i 2 + ( ∑ i = 1 n b i ) 2 \sum_{i=1}^{n}\sum_{j=i+1}^{n}{(a_i + a_j)^2} + \sum_{i=1}^{n}\sum_{j=i+1}^{n}{(b_i + b_j)^2} = (n-2)\sum_{i=1}^{n}{a_i^2} + (\sum_{i=1}^{n}{a_i})^2 + (n-2)\sum_{i=1}^{n}{b_i^2} + (\sum_{i=1}^{n}{b_i})^2 i=1nj=i+1n(ai+aj)2+i=1nj=i+1n(bi+bj)2=(n2)i=1nai2+(i=1nai)2+(n2)i=1nbi2+(i=1nbi)2

通过式子可以发现只需考虑 ( a 1 + a 2 + ⋅ ⋅ ⋅ + a n − 1 + a n ) 2 + ( b 1 + b 2 + ⋅ ⋅ ⋅ + b n − 1 + b n ) 2 (a_1 + a_2 + ··· + a_{n-1} + a_n)^2 + (b_1 + b_2 + ··· + b_{n-1} + b_n)^2 (a1+a2++an1+an)2+(b1+b2++bn1+bn)2 的最小值。

s u m = ∑ i = 1 n ( a i + b i ) sum = \sum_{i=1}^{n}{(a_i + b_i)} sum=i=1n(ai+bi) ,求出所有可能 a i a_i ai b i b_i bi 交换后的 s u m a = ∑ i = 1 n a i suma = \sum_{i=1}^{n}{a_i} suma=i=1nai , 以及 s u m b = s u m − s u m a sumb = sum - suma sumb=sumsuma

a n s = m i n ( ( n − 2 ) ( ∑ i = 1 n a i 2 + ∑ i = 1 n b i 2 ) + s u m a 2 + s u m b 2 ) ans = min((n - 2)(\sum_{i=1}^{n}{a_i^2} + \sum_{i=1}^{n}{b_i^2}) + suma ^ 2 + sumb^2) ans=min((n2)(i=1nai2+i=1nbi2)+suma2+sumb2)

如何快速的计算出 s u m a suma suma 的值?

采用分组背包的思路, d p [ i ] [ j ] dp[i][j] dp[i][j] 表示在前 i i i 个数中是否可以组合出值 j j j ,最后枚举 d p [ n ] [ i ] dp[n][i] dp[n][i] ,如果 d p [ n ] [ i ] dp[n][i] dp[n][i] 为真,则表示 s u m a suma suma 的值可以为 i i i ,再代入公式计算出 a n s ans ans 的最小值。

#include<stdio.h>
#include<bitset>

using namespace std;
const int N = 1e4 + 10;
int a[N],b[N],dp[110][N];

int main(){
	int t;
	scanf("%d",&t);
	while(t --) {
		int n,sum = 0,mul = 0;
		scanf("%d",&n);
		for(int i=1;i<=n;i++) {
			scanf("%d",&a[i]);
			sum += a[i];
			mul += a[i] * a[i];
		}
		for(int i=1;i<=n;i++) {
			scanf("%d",&b[i]);
			sum += b[i];
			mul += b[i] * b[i];
		}
		for(int i=0;i<=n;i++) {
			for(int j=0;j<=sum;j++) {
				dp[i][j] = 0;
			}
		}
		dp[0][0] = 1;
		for(int i=1;i<=n;i++) {
			for(int j=0;j<=sum;j++) {
				if(j >= a[i] && dp[i-1][j-a[i]]) dp[i][j] = 1;
				if(j >= b[i] && dp[i-1][j-b[i]]) dp[i][j] = 1;
			}
		}
		int res = 0x3f3f3f3f;
		for(int i=0;i<=sum;i++) if(dp[n][i]){
			res = min(res,((n - 2) * mul + i * i + (sum - i) * (sum - i)));
		}
		printf("%d\n",res);
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值