聪明的0v0正在学习莫比乌斯反演。
她看到了这样的一道题:有
n
∗
m
n*m
n∗m个人站成了一个
n
∗
m
n*m
n∗m的方阵……
剩下的题面,聪明的0v0不记得了。但是,她通过自己高超的数论技巧,给出了一个转化后的模型:给出n和m,求
Input
一行三个正整数n,m,p。
Output
一行一个非负整数,设答案为x,输出x mod p。
Sample Input
1 2 998244353
Sample Output
2
Data Constraint
30% n,m<=2000 p=998244353。
30% n*m<=10^9 n,m<=10^5 p为质数
20% n,m<=10^6 p为质数
20% n,m<=10^7 p为合数
对于所有数据,保证p<=10^9
比赛的时候打出了正解后就被拉去开家长会惹,但好像没有我什么事呵……
但比赛的时候只是自己打了个暴力然后开始输出这个表,发现答案就是
n
∗
m
n*m
n∗m
所以不假思索(也没时间思索啊)就交上A+B准备回来再交,结果回不来了。去到纪中大家比赛结束后讨论发现我这是正解。。。
我们可以将这个式子放到坐标系里边,
然后发现让我们求的就是被合法斜率穿过对于
[
1
−
n
,
1
−
m
]
[1-n,1-m]
[1−n,1−m]这个方阵中整点的个数。显然答案是
n
∗
m
n*m
n∗m。
#include<cstdio>
using namespace std;
long long n,m,p;
int main()
{
freopen("math.in","r",stdin);
freopen("math.out","w",stdout);
scanf("%lld%lld%lld",&n,&m,&p);
printf("%lld",(n%p*m%p)%p);
return 0;
}