5425. 【NOIP2017提高A组集训10.25】数论

这篇博客讲述了0v0在学习莫比乌斯反演时遇到的一道数论题目,该题目涉及一个n×m的方阵。通过数论技巧,0v0将问题转化为求解特定条件下的点数,并发现答案是n乘以m。在比赛中,0v0以暴力方法得到正确结果,并在后续讨论中确认为正解。问题的关键在于计算在[1-n, 1-m]方阵中被合法斜率穿过的整点个数。" 126572338,14697559,理解数据结构:严蔚敏版链表解析,"['数据结构', '链表']
摘要由CSDN通过智能技术生成

聪明的0v0正在学习莫比乌斯反演。
她看到了这样的一道题:有 n ∗ m n*m nm个人站成了一个 n ∗ m n*m nm的方阵……
剩下的题面,聪明的0v0不记得了。但是,她通过自己高超的数论技巧,给出了一个转化后的模型:给出n和m,求
在这里插入图片描述
Input
一行三个正整数n,m,p。

Output
一行一个非负整数,设答案为x,输出x mod p。

Sample Input
1 2 998244353

Sample Output
2

Data Constraint
30% n,m<=2000 p=998244353。
30% n*m<=10^9 n,m<=10^5 p为质数
20% n,m<=10^6 p为质数
20% n,m<=10^7 p为合数
对于所有数据,保证p<=10^9


比赛的时候打出了正解后就被拉去开家长会惹,但好像没有我什么事呵……
但比赛的时候只是自己打了个暴力然后开始输出这个表,发现答案就是 n ∗ m n*m nm
所以不假思索(也没时间思索啊)就交上A+B准备回来再交,结果回不来了。去到纪中大家比赛结束后讨论发现我这是正解。。。
我们可以将这个式子放到坐标系里边,
然后发现让我们求的就是被合法斜率穿过对于 [ 1 − n , 1 − m ] [1-n,1-m] [1n,1m]这个方阵中整点的个数。显然答案是 n ∗ m n*m nm

#include<cstdio>
using namespace std;
long long n,m,p;
int main()
{
	freopen("math.in","r",stdin);
	freopen("math.out","w",stdout);
	scanf("%lld%lld%lld",&n,&m,&p);
	printf("%lld",(n%p*m%p)%p);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值