辅助线
取DC中点P,连接PF、FN、OP
解答
根据垂径定理,OP⊥DC,故P、M、N、O四点共圆,而显然三角形FOA相似于三角形FPD(SAS),有∠FON=∠FPM,故P、F、N三点共线,并且此时∠AFO=∠DFP=∠BFN,因为O是中点,故FN为三角形ABF共轭中线,同理FM为三角形DCF共轭中线,显然有(AF * AF)/(BF * BF)=AN/BN,(DF * DF)/(CF * CF)=DM/CM,而(AF * AF)/(BF * BF)=(DF * DF)/(CF * CF)=(AD * AD)/(BC * BC),故(DM * AN)/(MC * NB)=(DF * DF * DF * DF)/(CF * CF * CF * CF),得证.