- 博客(30)
- 收藏
- 关注
原创 一篇文档学会MySQL数据库知识技能
涉及MySQL数据库的增删查找、多表查询等关键知识。基础内容全而广,关键部份广而深,便于温故知新,复习时候跟随目录点击跳转即可。
2022-11-28 17:10:27 468
原创 Python、数据分析、机器学习、SQL入门路线——学习&看课&刷题
适合非计算机科班的研0小白了解学习Python、数据分析、机器学习、SQL的入门路线,提供了一些学习&看课&刷题的小经验技巧。
2022-08-14 16:05:23 688
原创 安装Jupyter,并分别演示如何在Pycharm和谷歌浏览器中使用
因为在刷Leetcode和Newcode,其中老是有一些小的代码片段出bug,但是在刷题网站上又不方便调试(要会员),所以就想在自己的本地IDE上运行。恰好Jupyter能很满足运行代码的功能,并且还跟文档一样,便于我留下学习笔记,况且作为数据分析等必会知识点,Jupyter也是我最近要熟练的工具之一,所以趁此机会先了解一下。在此记录安装过程。...
2022-08-11 16:49:52 2724
原创 吴恩达机器学习课后作业7——K-means聚类与主成分分析
在本练习中,您将实现K-means聚类算法并应用它来压缩图像。在第二部分中,您将使用主成分分析来寻找人脸图像的低维表示。
2022-07-28 11:40:59 667
原创 吴恩达机器学习课后作业6——使用支持向量机(svm)构建一个垃圾邮件分类器
在本练习中,您将使用支持向量机(svm)构建一个垃圾邮件分类器。在本练习的前半部分,您将使用支持向量机(svm)处理各种示例2D数据集。使用这些数据集进行试验将帮助您直观地了解支持向量机的工作方式,以及如何在支持向量机中使用高斯核。在练习的下一部分中,您将使用支持向量机构建一个垃圾邮件分类器对于线性可分案例。......
2022-06-23 20:01:58 2599 3
原创 吴恩达机器学习课后作业5——怎么通过观察偏差和方差(bias vs variance)来调参
在本练习中,您将实现正则化线性回归,并使用它来研究具有不同偏差-方差特性的模型。在练习的前半部分,您将实现正则化线性回归,利用水库水位的变化来预测从大坝流出的水量。在后半部分中,您将对调试学习算法进行一些诊断,并检查偏差和偏差的影响。之前的题目中我们只用到了训练集,用训练集来训练模型,又用训练集来验证模型,这样的泛化能力就比较差。正常做法一般是先用训练集进行模型训练,训练好几个模型;然后用验证集来验证哪个模型效果好,选择好的模型并进行优化;最后是通过测试集对优化好的模型来进行最终的测试。......
2022-06-23 14:10:42 642
原创 吴恩达机器学习课后作业4——利用神经网络的反向传播( BP)算法应用于手写数字识别
在本练习中,您将实现神经网络的反向传播算法,并将其应用于手写数字识别任务。(从0到9)。
2022-06-13 16:06:05 896 1
原创 吴恩达机器学习课后作业3.1——利用神经网络进行多层次分类(Multi-class Classification with the neural network)
在这部分练习中,您将实现一个神经网络来识别手写数字。神经网络将能够表示形成非线性假设的复杂模型。
2022-06-09 19:07:47 246
原创 吴恩达机器学习课后作业3——多层次分类(Multi-class Classification)
自动手写数字识别在今天被广泛使用——从识别信封上的邮政编码(邮政编码)到识别银行支票上写的金额。这个练习将向您展示如何将您所学到的方法用于这个分类任务。在本练习中,您将使用逻辑回归和神经网络来识别手写数字(从0到9)。......
2022-06-09 16:04:02 929
原创 吴恩达机器学习课后作业2——逻辑回归(logistic regression)
假设您是一个大学部门的管理员,您想根据申请人在两次考试中的成绩来确定他们的入学机会。您可以使用以前申请人的历史数据作为逻辑回归的训练集。您的任务是构建一个分类模型,根据这两门考试的分数估计申请人被录取的概率。...
2022-06-06 10:41:56 879
原创 吴恩达机器学习课后作业1.1——多变量线性回归(Linear regression with multiple variable)
假设你要卖掉你的房子,你想知道一个好的市场价格是多少。其中一种方法是,首先收集最近出售的房屋的信息。在本部分的练习中,你将使用多元线性回归来预测房屋价格。
2022-06-02 18:07:38 561
原创 吴恩达机器学习课后作业1——单变量线性回归(Linear regression with one variable)
假设你正在考虑在不同的城市开一家新店。该连锁店已经在各个城市开设了餐车,你可以获得这些城市的利润和人口数据。在本部分的练习中,您将透过这些数据,通过单变量实现线性回归,以预测餐车的利润。
2022-06-02 15:21:35 910
原创 吴恩达机器学习打卡day10
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P93—选择要使用的功能尽可能通过“调参”使数据符合正态分布。图1 增加维度图2 图3 创造特征图4 课程视频P94—多元高斯分布在平面图形上看,就会容易误判绿色的点,但是如果从三维图形看,它不一定是坏点。图5 下面用几张图形象的看一下高斯分布:图一:μ取在原点,改变的值压缩后的数据是可以重现回原始数据了,会有一点误差,但误差很小。图6 图三:
2022-05-29 20:45:20 172
原创 吴恩达机器学习打卡day9
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P83—主成分分析构思PCA(Principal Component Analysis Problem Formulation)线性回归和PCA的最优模型都是最小化某个值,只是线性回归最小化预测值和真实值之间的误差,而PCA最小化投影误差。PCA三维和PCA二维原理相同,都是最小化投影误差。图1 图2 课程视频P84svd产生的U是由特征向量组成的,按照特征值大小排列的,即大的特征值对
2022-05-26 17:41:46 192
原创 吴恩达机器学习打卡day8
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P73** 将旧的特征x1x_1x1,x2x_2x2,x3x_3x3,x4x_4x4…通过核函数变成新的特征f1f_1f1,f2f_2f2,f3f_3f3,f4f_4f4…**图1 课程视频P74——SVM参数特点** 符合正态分布的函数图像特点。**图2 课程视频P75——K-means算法**随机初始化。**图3 课程视频P81——数据压缩通过降维的
2022-05-25 21:17:49 177
原创 以Web of Science 为例,使用Citespace进行文献计量分析的一般步骤
介绍了用Web of Science 检索文献的方法,并使用Cite Space对获取的数据进行分析的一般步骤。
2022-04-10 12:47:24 54525 16
原创 使用Python对xlsx,csv, txt格式文件进行读、写并绘图
最近需要用到python通过读取,写入Excel数据,并画一些图。虽然以前学过一些,但是都忘得差不多了,故翻出以前学习的资料,整理在此,常用常新,也方便自己以后复习。
2022-04-09 19:17:14 9748
原创 LaTeX常用的希腊字符、数学符号、矩阵、公式、排版、中括号、大括号以及插入图片等操作手册
因为在写周报或者论文时需要使用LaTeX,但是因为对其上手时间不长,导致很多操作不熟悉,特别是针对许多特殊字符和排版样式都不了解,每次使用都需要现查,效率十分低下,故萌生了攥写属于自己的LaTeX常用操作手册的想法,方便自己的同时也能为供别人参考。本帖将会在实际应用中持续更新......
2022-04-07 00:35:33 11213
原创 安装pytorch和其他库的常见问题及解决办法
安装pytorch时出现Collecting package metadata (current_repodata.json): failed以及“Conda错误:Collecting package metadata (current_repodata.json): failed”的解决办法
2022-04-05 19:04:40 7378 3
原创 吴恩达机器学习打卡day5
记录了学习时的一些知识点,方便自己复习。课程视频P43——非线性假设图1 表示当变量特别多,比如在计算机视觉图像识别上,就算是50x50的一小块区域就包含2500个像素,每个像素算做一个变量,按灰度计算每个像素就有255个颜色,如果按RGB来计算每个像素就有7500个颜色,如此以来总的特征就超过了3 million 个,因此用线性方式表示就不合适了,会导致计算量太大。图1 课程视频P44——神经元与大脑由此,提出了神经元的方式来表示。图2
2022-04-03 18:11:14 2610
原创 双非机械转码挣扎ing——4月份目标
针对机械双非的就业现状制作的逃生路线,本章节主要制定了4月份的目标。已经在谷底了,往哪边都是向上。这个年纪真睡不着,那就干吧。
2022-03-28 13:54:29 1466
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人