吴恩达机器学习打卡day6

本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。

课程视频P54

图1 表示求导数的原理。
在这里插入图片描述

图1

图2 将图1推广到有n个参数变量的情况。
在这里插入图片描述

图2

图3 提出了一些注意事项。
在这里插入图片描述

图3

课程视频P55

图4 表示了求导时的一些特殊规律。
在这里插入图片描述

图4

课程视频P56

图5 给出了选择神经网络层数的一些规律,通常中间层的层数要大于等于输入层的特征变量数量。
在这里插入图片描述

图5

** 图6 给出了训练神经网络的操作步骤**
在这里插入图片描述

图6

** 图7 续接了图6 ,给出了训练神经网络的操作步骤:**
在这里插入图片描述

图7

课程视频P58

图8 说明了训练算法时的一些思想误区,不是样本数量越多就越好,更多还是要考虑方法的优异性。
在这里插入图片描述

图8

图9 表示要通过一些诊断方法来及时测试出算法的有效性。
在这里插入图片描述

图9

课程视频P59

当算法的泛化性很差时,训练出的算法只能够在训练数据中取得好的效果,而不能在其他的数据集中适用。
在这里插入图片描述

图10

所以要通过一些测试结果对算法做一个初步判断。
在这里插入图片描述

图11

课程视频P60

通过图12 的思想,不断增加代价函数的项数和最高次数,来测试出哪一次数下的函数效果最好。
在这里插入图片描述

图12

为了更好的测试,我们将数据一分为三,第一部分为训练集(Training set),第二部分为验证集(Cross validation),第三部分为测试集 (Test set)。
在这里插入图片描述

图13

图14 表示了不同样本测试样本集下的代价函数相应的误差。。
在这里插入图片描述

图14

**图15 展示了这样在选择模型的时候,可以先使用测试集得到每个模型的 θ θ \thetaθ θθ,然后使用验证集评估得到误差最小的模型,最后使用测试集评估他的泛化能力。

**
在这里插入图片描述

图15

课程视频P61——偏差和方差

**当多项式次数增大时,训练集的误差慢慢减小,因为多项式次数越高,图像拟合的就越准确。但是验证集不同,它的趋势是先减少后增大,这分别对应着欠拟合和过拟合。
**
在这里插入图片描述

图16

图17 表示我们可以根据误差的不同表现来区分偏差和方差。
当训练误差(Bias)和验证方差(Variance)都很大时,表示高偏差,即表示欠拟合;
当训练误差(Bias)很小,验证方差(Variance)很大时,表示高方差,即表示过拟合。
通过画出图像可以很好的帮助我们判断训练测试的效果。

在这里插入图片描述

图17

课程视频P39——正则化的偏差和方差

通过引入 l a m d a lamda lamda来平衡多形式的权重。
当lambdaλ太大,参数 θ \theta θ≈0,模型近似水平直线,即表示欠拟合。当lambda太小,就会出现过拟合。

在这里插入图片描述

图18

图19 中表示通过将 λ \lambda λ从0.01到10,以每次为上次的2倍的梯度步进,一点点试出最合适的 λ \lambda λ值。
在这里插入图片描述

图19

图20 中通过画出图像可以很好的帮助我们判断训练测试的效果。
当训练误差(Bias)和验证方差(Variance)都很大时,表示高偏差,即表示欠拟合。;
当训练误差(Bias)很小,验证方差(Variance)很大时,表示高方差,即表示过拟合。

在这里插入图片描述

图20

图21 形象的表现为函数过分追求与训练数据去贴合,关注了太多指标,导致泛化(generalize)性比较差。
在这里插入图片描述

图21

如图22 介绍了应对函数过拟合问题的一些办法。
在这里插入图片描述

图22

课程视频P62——代价函数

图23 介绍了“罚因子”,对于目标函数最小化问题,当某些指标对代价函数值的影响很小时,如图23 中的 θ 3 , θ 4 \theta_3, \theta_4 θ3,θ4,我们可对其乘以一个很大的数,如此处了1000,作为代价函数的“罚因子”,当 θ 3 , θ 4 \theta_3, \theta_4 θ3,θ4过大时,函数值将很难取得最小值,由此保证了在迭代过程中,保持 θ 3 , θ 4 \theta_3, \theta_4 θ3,θ4的值很小。
在这里插入图片描述

图23

除了“罚因子”之外,用正规化(regularization)求解时也可以对代价函数加上 λ . . . . \lambda.... λ....这一坨。
在这里插入图片描述

图24

续接上图
在这里插入图片描述

图25

但是 λ . . . . \lambda.... λ....的取值也不是乱取的,若 λ . . . . \lambda.... λ....取得太大了,则相当于与 θ 1 . . . θ n \theta_1...\theta_n θ1...θn全都被干掉了,不起作用了,此时只剩下 θ 1 \theta_1 θ1, 于是 h θ ( x ) = θ 1 , 代 价 函 数 就 变 成 一 条 直 线 了 , 这 样 也 不 行 。 h_{\theta}(x)=\theta_1,代价函数就变成一条直线了,这样也不行。 hθ(x)=θ1线
在这里插入图片描述

图26

课程视频P63——线性回归的正则化

如图27表示,在梯度下降中,求偏导那一步最后加上 λ m \frac{\lambda}{m} mλ θ j \theta_j θj, 就相当于在原来的基础上每次开头先将 θ j \theta_j θj减去 α \alpha α θ j \theta_j θj(一个很小的数。

在这里插入图片描述

图27

加上 λ m \frac{\lambda}{m} mλ θ j \theta_j θj, 之后,用矩阵形式求解时的求解公式就变成了如图28所示。
在这里插入图片描述

图28

课程视频P63——Logistic回归的正则化

与线性回归的正则化类似,只是代价函数变成log函数形式了。
在这里插入图片描述

图29

梯度下降法的求解也是与线性回归一样的,只是将 h θ ( x ) h_{\theta}(x) hθ(x)函数换了,如图30 右下角所示。
在这里插入图片描述

图30

多元函数的梯度下降法的偏导环节如下所示。
在这里插入图片描述

图31

未完待续…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值