动态规划 Leetcode 62 不同路径

本文介绍了如何使用二维表格和动态规划方法解决LeetCode题目62,通过(i,j)坐标表示路径,并给出递推公式dp[i][j]=dp[i-1][j]+dp[i][j-1],计算从(0,0)到(m,n)的独特路径数。
摘要由CSDN通过智能技术生成

不同路径

Leetcode 62

学习记录自代码随想录

要点:1.二维表格,想到(i,j)去代表其坐标,dp数组也因此为二维数组;
2.递推公式 d p [ i ] [ j ] dp[i][j] dp[i][j]的上一步只能是其左边或上边,所以 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1] dp[i][j]=dp[i1][j]+dp[i][j1]

class Solution {
public:
    int uniquePaths(int m, int n) {
        if(m == 1 || n == 1) return 1;  // 间接的dp数组初始值
        // 1.dp[i][j],代表从(0,0)到(i,j)有dp[i][j]条路径
        vector<vector<int>> dp(m, vector<int>(n, 0));
        // int dp[m][n];
        // 2.递推公式:dp[i][j] = dp[i-1][j] + dp[i][j-1]
        // 3.初始化:dp[i][0] = 1, dp[0][j] = 1
        for(int i = 0; i < m; i++) dp[i][0] = 1;
        for(int j = 0; j < n; j++) dp[0][j] = 1;
        // 4.遍历顺序,从左到右
        // 5.举例推导
        for(int i = 1; i < m; i++){
            for(int j = 1; j < n; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值