leetcode62不同路径 动态规划和递归解法

题目

题干

题目链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

在这里插入图片描述

数据规模

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

题解

思路1-动态规划

map[i][j]表示下标为(i,j)的坐标的路径数, 那么为了到达(i, j), 要么先到达(i-1, j)或者先到达(i, j-1),而到达前者有map[i-1][j]条路径, 到达后者有map[i][j-1]条路径, 故很明显有map[i][j]=map[i-1][j]+map[i][j-1]

因此直接用一个dp就可以解决, 最后答案ans = map[m-1][n-1]

这应该是比较省时的解法了, 量级为mn

思路2-递归

我们将思路1中的map[i][j]看作是一个函数func(i, j),那么有:
f u n c ( i , j ) = { 1 , i = = 0 1 , j = = 0 f u n c ( i − 1 , j ) + f u n c ( i , j − 1 ) o t h e r s \Large func(i, j) = \left\{ \begin{array}{lr} 1, & i==0 \\ 1, & j ==0 \\ func(i-1,j)+func(i,j-1) &others \end{array} \right. func(i,j)=1,1,func(i1,j)+func(i,j1)i==0j==0others
那么答案ans = func(m-1, n-1)

但是这种解法肯定超时, 因为数量级是n!+m!

代码实现

/*
 * 思路1
 */

class Solution {
public:
    int MAXN = 100;
    int uniquePaths(int m, int n) {
        int map[MAXN][MAXN];
        for(int i=0; i<m; i++){
            map[i][0] = 1;
        }
        for(int j=0; j<n; j++){
            map[0][j] = 1;
        }
        
        for(int i=1; i<m; i++){
            for(int j=1; j<n; j++){
                map[i][j] = map[i-1][j]+map[i][j-1];
            }
        }
        
        return map[m-1][n-1];
    }; 
};


/*
 * 思路2, 肯定超时, 这题不建议用递归
 */

class Solution {
    int func(int x, int y){
        if(x == 0)  return 1;
        else if(y == 0) return 1;
        else return func(x-1, y)+func(x, y-1);
    }
    int uniquePaths(int m, int n) {
        return func(m-1, n-1);
    }; 
};
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

对象被抛出

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值