动态规划 Leetcode 300 最长递增子序列

最长递增子序列

Leetcode 300

学习记录自代码随想录

要点:1.dp数组含义:dp[i]代表以nums[i]结尾的最长递增子序列的长度;
2.递推公式: f o r ( j = 0 : i ) i f ( n u m s [ i ] > n u m s [ j ] ) d p [ i ] = m a x ( d p [ i ] , d p [ j ] + 1 ) for(j = 0 : i) if(nums[i]>nums[j]) dp[i] = max(dp[i], dp[j]+1) for(j=0:i)if(nums[i]>nums[j])dp[i]=max(dp[i],dp[j]+1)
3. 返回不能直接返回dp[n-1],因为此时dp[n-1]代表的是以nums[n-1]结尾的最大递增子序列的长度,所以此时要返回dp数组的最大值;

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {

        int n = nums.size();
        // 1.dp[i]含义为以nums[i]结尾的递增子序列的最大长度
        vector<int> dp(n, 1);
        // 2.递推公式:for(j = 0 : i) if(nums[i] > nums[j]) dp[i] = max(dp[i], dp[j]+1)
        // 3.dp数组初始化:每一个nums[i]结尾对应的dp[i]序列长度最少为1;
        // dp[0] = 1;
        // 4.遍历顺序:正向遍历
        int result = 0;
        for(int i = 0; i < n; i++){
            for(int j = 0; j < i; j++){
                if(nums[i] > nums[j]) dp[i] = max(dp[i], dp[j]+1);
            }
            if(dp[i] > result) result = dp[i];
        }
        // 5.举例推导dp数组
        // 注意此时不能直接返回dp[n-1],因为dp[n-1]代表的是以nums[n-1]结尾的最长递增子序列的长度,不是所有的最长递增子序列 
        // return dp[n-1];  
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值