conda进行transformers安装

本文介绍了如何使用conda创建并配置Python3.8环境,包括安装numpy、pytorch及其相关库如huggingface和transformers。还提供了清华大学大模型网课的transformers入门demo链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先建立新环境

conda create -n myenv python=3.8

安装numpy和pytorch

conda install numpy
conda install pytorch torchvision torchaudio cpuonly -c pytorch -c conda-forge

其余的一些环境配置

huggingface_hub           0.16.4                     py_0    huggingface
importlib-metadata        6.0.0            py38haa95532_0    defaults

如果版本不对可能会报奇怪错误

安装transformers

conda install -c huggingface transformers
conda install -c huggingface datasets

transformers入门demo(转自清华大学大模型网课)

https://colab.research.google.com/drive/1tcDiyHIKgEJp4TzGbGp27HYbdFWGolU_#scrollTo=ybucJuvjW9eF

### 如何在 Conda 环境中安装和使用 Transformers 库 #### 创建并激活新的 Conda 虚拟环境 为了确保依赖项不会与其他项目冲突,建议为每个项目创建独立的虚拟环境。对于 Python 3.8 版本: ```bash conda create -n myenv python=3.8 ``` 激活新建的环境以便后续安装所需的软件包[^3]。 ```bash conda activate myenv ``` #### 安装 PyTorch 和其他基础库 考虑到兼容性和性能优化,在此之前应该先确认 CUDA 的版本以及操作系统的信息,并选择合适的 PyTorch 安装方式。推荐通过国内镜像源加速下载过程。以下是基于 CPU 的安装命令示例;如果需要 GPU 支持,则应调整相应的参数来匹配本地硬件条件。 ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch -c conda-forge ``` 接着一次性安装常用的科学计算库如 `pandas`、`numpy`、`matplotlib` 及机器学习工具 `scikit-learn`: ```bash conda install pandas numpy matplotlib scikit-learn ``` #### 安装 Hugging Face Transformers 库 完成上述准备工作之后,可以直接利用 pip 或者 conda安装最新的 transformers 库。通常情况下,官方文档会给出最简便的方法来进行安装。例如: ```bash pip install transformers ``` 或者采用 conda 方式: ```bash conda install -c huggingface transformers ``` 验证安装是否成功可以通过查询已安装的 packages 列表中的 transformers 版本来实现: ```bash conda list transformers ``` #### 解决潜在问题 遇到任何错误提示时,可以考虑清理缓存或移除可能引起冲突的具体 package 后重试。比如当某些旧版组件阻碍更新进程时,执行如下指令可能会有所帮助: ```bash conda clean --all conda remove problematic-package-name ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值