Task1 心电信号赛题理解 小白自学

Datawhale 零基础入门数据挖掘-Task1 赛题理解

Task1赛题理解

赛题以心电图数据为背景,要求选手根据心电图感应数据预测心跳信号,其中心跳信号对应正常病例以及受不同心律不齐和心肌梗塞影响的病例,这是一个多分类的问题。通过这道赛题来引导大家了解医疗大数据的应用,帮助竞赛新人进行自我练习、自我提高。

1.1学习目标

  • 理解赛题数据和目标,清楚评分体系。
  • 完成相应报名,下载数据和结果提交打卡(可提交示例结果),熟悉比赛流程

1.2了解赛题

  • 赛题概况
  • 数据概况
  • 预测指标
  • 分析赛题
1.2.1赛题概况

比赛要求根据给定的数据集,建立模型,预测不同的心跳信号。赛题以预测心电图心跳信号类别为任务,数据集报名后可见并可下载,该该数据来自某平台心电图数据记录,总数据量超过20万,主要为1列心跳信号序列数据,其中每个样本的信号序列采样频次一致,长度相等。为了保证比赛的公平性,将会从中抽取10万条作为训练集,2万条作为测试集A,2万条作为测试集B,同时会对心跳信号类别(label)信息进行脱敏。

通过这道赛题来引导大家走进医疗大数据的世界,主要针对于于竞赛新人进行自我练习,自我提高。

1.2.2数据概况
第一次接触这么大的数据集,用baseline跑起来感觉挺慢的。不清楚是什么原因,在DSW上代码运行的特别慢,在jupyter notebook上跑完一遍大概需要6分钟左右

train.csv

  • id 为心跳信号分配的唯一标识
  • heartbeat_signals 心跳信号序列(数据之间采用“,”进行分隔)
  • label 心跳信号类别(0、1、2、3)

testA.csv

  • id 心跳信号分配的唯一标识
  • heartbeat_signals 心跳信号序列(数据之间采用“,”进行分隔)
1.2.3预测指标
以下内容都是datawhlae原md文件里的内容,可以说是很详尽了,相关内容还有吴恩达老师的视频精准度和召回率的权衡那一章节

选手需提交4种不同心跳信号预测的概率,选手提交结果与实际心跳类型结果进行对比,求预测的概率与真实值差值的绝对值。

具体计算公式如下:

总共有n个病例,针对某一个信号,若真实值为[y1,y2,y3,y4],模型预测概率值为[a1,a2,a3,a4],那么该模型的评价指标abs-sum为
a b s − s u m = ∑ j = 1 n ∑ i = 1 4 ∣ y i − a i ∣ {abs-sum={\mathop{ \sum }\limits_{{j=1}}^{{n}}{{\mathop{ \sum }\limits_{{i=1}}^{{4}}{{ \left| {y\mathop{{}}\nolimits_{{i}}-a\mathop{{}}\nolimits_{{i}}} \right| }}}}}} abssum=j=1ni=14yiai
例如,某心跳信号类别为1,通过编码转成[0,1,0,0],预测不同心跳信号概率为[0.1,0.7,0.1,0.1],那么这个信号预测结果的abs-sum为
a b s − s u m = ∣ 0.1 − 0 ∣ + ∣ 0.7 − 1 ∣ + ∣ 0.1 − 0 ∣ + ∣ 0.1 − 0 ∣ = 0.6 {abs-sum={ \left| {0.1-0} \right| }+{ \left| {0.7-1} \right| }+{ \left| {0.1-0} \right| }+{ \left| {0.1-0} \right| }=0.6} abssum=0.10+0.71+0.10+0.10=0.6

多分类算法常见的评估指标如下:

其实多分类的评价指标的计算方式与二分类完全一样,只不过我们计算的是针对于每一类来说的召回率、精确度、准确率和 F1分数。

1、混淆矩阵(Confuse Matrix)

  • (1)若一个实例是正类,并且被预测为正类,即为真正类TP(True Positive )
  • (2)若一个实例是正类,但是被预测为负类,即为假负类FN(False Negative )
  • (3)若一个实例是负类,但是被预测为正类,即为假正类FP(False Positive )
  • (4)若一个实例是负类,并且被预测为负类,即为真负类TN(True Negative )

第一个字母T/F,表示预测的正确与否;第二个字母P/N,表示预测的结果为正例或者负例。如TP就表示预测对了,预测的结果是正例,那它的意思就是把正例预测为了正例。

2.准确率(Accuracy)
准确率是常用的一个评价指标,但是不适合样本不均衡的情况,医疗数据大部分都是样本不均衡数据。
A c c u r a c y = C o r r e c t T o t a l A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{Correct}{Total}\\ Accuracy = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TotalCorrectAccuracy=TP+TN+FP+FNTP+TN
3、精确率(Precision)也叫查准率简写为P

精确率(Precision)是针对预测结果而言的,其含义是在被所有预测为正的样本中实际为正样本的概率在被所有预测为正的样本中实际为正样本的概率,精确率和准确率看上去有些类似,但是是两个完全不同的概念。精确率代表对正样本结果中的预测准确程度,准确率则代表整体的预测准确程度,包括正样本和负样本。
P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP
4.召回率(Recall) 也叫查全率 简写为R

召回率(Recall)是针对原样本而言的,其含义是在实际为正的样本中被预测为正样本的概率
R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

下面我们通过一个简单例子来看看精确率和召回率。假设一共有10篇文章,里面4篇是你要找的。根据你的算法模型,你找到了5篇,但实际上在这5篇之中,只有3篇是你真正要找的。

那么算法的精确率是3/5=60%,也就是你找的这5篇,有3篇是真正对的。算法的召回率是3/4=75%,也就是需要找的4篇文章,你找到了其中三篇。以精确率还是以召回率作为评价指标,需要根据具体问题而定。

5.宏查准率(macro-P)

计算每个样本的精确率然后求平均值
m a c r o P = 1 n ∑ 1 n p i {macroP=\frac{{1}}{{n}}{\mathop{ \sum }\limits_{{1}}^{{n}}{p\mathop{{}}\nolimits_{{i}}}}} macroP=n11npi
6.宏查全率(macro-R)

计算每个样本的召回率然后求平均值
m a c r o R = 1 n ∑ 1 n R i {macroR=\frac{{1}}{{n}}{\mathop{ \sum }\limits_{{1}}^{{n}}{R\mathop{{}}\nolimits_{{i}}}}} macroR=n11nRi
7.宏F1(macro-F1)
m a c r o F 1 = 2 × m a c r o P × m a c r o R m a c r o P + m a c r o R {macroF1=\frac{{2 \times macroP \times macroR}}{{macroP+macroR}}} macroF1=macroP+macroR2×macroP×macroR
与上面的宏不同,微查准查全,先将多个混淆矩阵的TP,FP,TN,FN对应位置求平均,然后按照P和R的公式求得micro-P和micro-R,最后根据micro-P和micro-R求得micro-F1

8.微查准率(micro-P)
m i c r o P = T P ‾ T P ‾ × F P ‾ {microP=\frac{{\overline{TP}}}{{\overline{TP} \times \overline{FP}}}} microP=TP×FPTP
9.微查全率(micro-R)
m i c r o R = T P ‾ T P ‾ × F N ‾ {microR=\frac{{\overline{TP}}}{{\overline{TP} \times \overline{FN}}}} microR=TP×FNTP
10.微F1(micro-F1)
m i c r o F 1 = 2 × m i c r o P × m i c r o R m i c r o P + m i c r o R {microF1=\frac{{2 \times microP\times microR }}{{microP+microR}}} microF1=microP+microR2×microP×microR

1.2.4赛题分析(复制)
  • 本题为传统的数据挖掘问题,通过数据科学以及机器学习深度学习的办法来进行建模得到结果。
  • 本题为典型的多分类问题,心跳信号一共有4个不同的类别
  • 主要应用xgb、lgb、catboost,以及pandas、numpy、matplotlib、seabon、sklearn、keras等等数据挖掘常用库或者框架来进行数据挖掘任务。

1.4经验总结

赛题理解的是数据竞赛的第一步,也是极其重要的一步,赛题的理解会影响后续的特征工程以及构建模型的思路。赛题背后的思想以及赛题的业务逻辑的理解也能很大程度的增加强特征的构建,从而构建更有效的模型。

  • 在开始比赛之前要对赛题进行充分的了解

  • 关注相关比赛以及其它选手的分享

  • 保留不同模型的代码和结果

  • 需要清楚自己所用到的函数需要传入什么样的数据类型,再以此来对数据进行预处理(很复杂),变成自己需要的样子

  • 合理简化数据集,除去冗余的数据

写在最后

由于课程以及考试的冲突,这次任务完成的很不好,接下来的任务中会认真对待。通过目前来看,良好的预测结果需要其他更优的模型来训练,作为小白的我则需要花跟多的时间去寻找以及了解其他模型。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值