小和问题
题目描述
在一个数组中,每一个数左边比当前数小的数累加起来,叫做这个数组的小和,求一个数组的小和
例
- [1,3,4,2,5]
- 1左边比1小的数–没有
- 3左边比3小的数-- 1
- 4左边比4小的数-- 1,3
- 2左边比2小的数-- 1
- 5左边比5小的数–1,3,4,2
- 小和 = 1+1+3+1+1+3+4+2 = 16
解法一 : 暴力解法
指针i每到一个数,遍历他左边的数,凡是小于他的都加上
public static int smallSum(int[] arr){
if (arr == null || arr.length < 2){
return 0;
}
int sum = 0;
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
if (arr[j]<arr[i]){
sum+=arr[j];
}
}
}
return sum;
}
因为是对指针每一次移动的左边都进行遍历,其实全部都是等差数列,所以时间复杂度就是O(n^2)
解法二 : 归并排序
归并排序在我之前的文章中写过了,传送门归并排序
使用逆向思维,求小和是求该数左边有几个数比这个数小,就加起来,那么反过来不就是看这个数右边有几个数比他大,就累加几个他
那么逆向思维有了,怎么使用归并排序解呢?
在merge的过程中,每一个数求有多少个比这个数大的过程中,是分批的,不遗漏的,不重复的,依此找到的
- 根据以上的详细分析,小和=1的过程(1+1+1+1)+3的过程(3+3)+4的过程(4)+2的过程(2)+5的过程(0) = 16
代码实现如下
/**
* 求小和
* @param arr
* @return
*/
public static int smallSum2(int[] arr){
if (arr == null || arr.length < 2){
return 0;
}
return process(arr,0,arr.length-1);
}
/**
* 既要排好序,又要求小和
* @param arr
* @param left
* @param right
* @return
* process(arr, left, mid)-->左侧排序求小和的数量
* process(arr,mid+1,right)-->右侧排序求小和的数量
* merge(arr,left,mid,right)-->左右侧排好序,merge时候产生的数量
*/
public static int process(int[] arr,int left,int right){
if (left==right){
return 0;
}
int mid = left+(right-left)/2;
return process(arr, left, mid)
+process(arr,mid+1,right)
+merge(arr,left,mid,right);
}
/**
*
* @param arr
* @param left
* @param mid
* @param right
* @return
*/
public static int merge(int[] arr,int left,int mid,int right){
int[] temp = new int[right-left+1];
int i = 0;
int p1 = left;
int p2 = mid+1;
int res = 0;
while (p1 <= mid && p2 <= right){
//只有左边小于右边才产生小和数量增加的行为
//(right-p2+1)当前的右边有多少个数比左边指针所指的数大
//(right-p2+1)*arr[p1] 个数*左边的数 就是小和增加的量
res += arr[p1]<arr[p2] ? (right-p2+1)*arr[p1] : 0;
//和归并排序一样就是剩下的进行拷贝,但是如果等于的话,就先拷贝右组的
temp[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];
}
//最终都会有一方越界,谁先越界就直接拷贝剩下的
//P2先越界
while (p1 <= mid){
temp[i++] = arr[p1++];
}
//P1先越界
while (p2 <= right){
temp[i++] = arr[p2++];
}
//把temp[]中的数据拷贝回原来的数组中
for (i = 0; i < temp.length; i++) {
arr[left+i] = temp[i];
}
return res;
}