初始化:k个概率分布及其参数;
while(参数收敛速度≥
v
0
v_0
v0)
{E:计算所有样本属于任意一个分布的概率;(n×k个)
M:以E步的概率为权,对每一个分布的参数进行极大似然估计,更新参数;
}
思想:与k-means的思想类似,EM算法是先将样本划给某一分布(但是是软分配,计算的是属于某一分布的概率),再用此划分结果对参数进行极大似然估计,调整分布的位置,重复上述步骤,直至收敛。