EM算法笔记

初始化:k个概率分布及其参数;
while(参数收敛速度≥ v 0 v_0 v0)
{E:计算所有样本属于任意一个分布的概率;(n×k个)
M:以E步的概率为权,对每一个分布的参数进行极大似然估计,更新参数;

思想:与k-means的思想类似,EM算法是先将样本划给某一分布(但是是软分配,计算的是属于某一分布的概率),再用此划分结果对参数进行极大似然估计,调整分布的位置,重复上述步骤,直至收敛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值