LibreOJ-dfs序2 (dfs序,线段树)

LibreOJ-dfs序2 (dfs序,线段树)

题目描述

给一棵有根树,这棵树由编号为1~N 的 N个结点组成。根结点的编号为R。每个结点都有一个权值,结点 的权值为 。 接下来有 M组操作,操作分为两类:

1 a x,表示将结点 的子树上所有结点的权值增加 ;
2 a,表示求结点 的子树上所有结点的权值之和。

输入格式

第一行有三个整数 N,M和R。
第二行有 N个整数,第 i个整数表示 vi
在接下来的 N-1行中,每行两个整数,表示一条边。
在接下来的 M行中,每行一组操作。

输出格式

对于每组 2 a操作,输出一个整数,表示「以结点 a为根的子树」上所有结点的权值之和。

用到了dfs序,两个数组 st[ ] ,en[ ] 储存每个点遍历的出入时间,通过时间可算出子树节点。
通过 mp[ ] 数组,找到结点与树的对应(映射)
线段树的区间修改和区间查询,并结合 st[ ] , en[ ] 数组,找到所用的区间。

  • 区间修改时标记 lazy[ ] 数组,查询时再向下传递。

代码↓

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 5;
vector<int> q[N];
int st[N],en[N],tmp=0;
int n,m,r,b[N];
long long sum[N<<2],lazy[N<<2];
int mp[N]; 

void dfs(int u, int fa)
{
	st[u]=++tmp;
	mp[tmp] = u;
	for(auto v:q[u])
	{
		if(v==fa) continue;
		dfs(v,u);
	}
	en[u]=tmp;
}

int a[1005],c[1005];

void pushup(int i)

{
	sum[i]=sum[i<<1]+sum[i<<1|1];
}

void up(int i,long long len,long long v)
{
	sum[i]+=len * v;
	lazy[i]+=v; 
}

void pushdown(int i,int l,int r)
{
	int mid=(l+r)/2;
	if(lazy[i]) 
	{
		up(i<<1,mid-l+1,lazy[i]);
		up(i<<1|1,r-mid,lazy[i]);
		lazy[i] = 0;
	}
}

void build(int i,int l,int r)
{
	if(l==r) {
		sum[i] = b[mp[l]];
		return ;
	}
		
	int mid=(l+r)/2;
	build(i<<1,l,mid);
	build(i<<1|1,mid+1,r);
	
	pushup(i);
}

//区间修改
void zeng(int i,int ql,int qr,int l,int r,int v)
{
	if(ql<=l && qr >=r)
	{
		up(i,r-l+1,v);
		return ;
	}
	int mid=(l+r)/2;
	pushdown(i,l,r);
	if(ql<=mid)
		zeng(i<<1,ql,qr,l,mid,v);
	if(qr>mid)
		zeng(i<<1|1,ql,qr,mid+1,r,v);
	pushup(i);
}


//区间查询
long long he(int i,int ql,int qr,int l,int r)
{
	if(ql<=l && qr >=r)
	{
		return sum[i];
	}
	int mid=(l+r)/2;
	pushdown(i,l,r);
	long long ans = 0;
	if(ql<=mid)
		ans+=he(i<<1,ql,qr,l,mid);
	if(qr>mid)
		ans+=he(i<<1|1,ql,qr,mid+1,r);
	return ans;
}

int main()
{
	ios::sync_with_stdio(false);
	cin>>n>>m>>r;
	for(int i=1;i<=n;i++)
	{
		cin>>b[i];
	}

	int x,y;
	for(int i=1;i<n;i++)
	{
		cin>>x>>y;
		q[x].push_back(y);
		q[y].push_back(x);
	}
	dfs(r,0);
	// dfs序
	build(1, 1, n);
	int f;
	while(m--)
	{
		cin>>f;
		if(f==1)
		{
			cin>>x>>y;
//			st[x], en[x]可找到子树的区间
			zeng(1, st[x], en[x], 1, n, y);
		}
		else
		{
			cin>>x;
			cout<<he(1,st[x],en[x],1,n)<<endl;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值