模板 29 : 背包问题 (动态规划 )伪代码

创建一个状态矩阵f,横坐标 i 是物体编号,纵坐标 j 为背包容量。
首先将 f 第0行和第0列初始化为0

for (int i = 1; i <= n; i++)

{

for (int j = V; j >= 0; j--)

{

if (j >= w[i])//如果背包装得下当前的物体

{

f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[i]);

}

else//如果背包装不下当前物体

{

f[i][j] = f[i - 1][j];

}

}

}



下来依次遍历f的每一行。
for(int i=1;i<n;i++)

{

for(int j=0;j<m;j++)

{

f[i][j]=f[i-1][j];

if(j-w[i]>=0)

{

f[j]=max(f[j],f[j-w[i]]+v[i]);

}

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值