算法与数据结构 判断选择程序填空 二叉树

这是一篇关于二叉树与算法的填空题集,涵盖了二叉排序树、完全二叉树、哈夫曼树、二叉树遍历、数据结构等概念的判断和理解,包括正确与错误的陈述,以及相关性质和性质的应用。
摘要由CSDN通过智能技术生成

1-1在二叉排序树中,每个结点的关键字都比左孩子关键字大,比右孩子关键字小。T
1-2若A和B都是一棵二叉树的叶子结点,则存在这样的二叉树,其前序遍历序列为…A…B…,而中序遍历序列为…B…A…。 F
1-3完全二叉树中,若一个结点没有左孩子,则它必是树叶。 T
1-4完全二叉树一定存在度为1的结点。 F
1-5将一棵完全二叉树存于数组中(根结点的下标为1)。则下标为23和24的两个结点是兄弟。 F
1-6若一个结点是某二叉树的中序遍历序列的最后一个结点,则它必是该树的前序遍历序列中的最后一个结点。F
1-7一棵有124个结点的完全二叉树,其叶结点个数是确定的。 T
1-8哈夫曼树的结点个数不能是偶数。T
1-9在一棵由包含4、5、6等等一系列整数结点构成的二叉搜索树中,如果结点4和6在树的同一层,那么可以断定结点5一定是结点4和6的父亲结点。F
1-10在含有n个结点的树中,边数只能是n-1条。 T
1-11一棵有9层结点的完全二叉树(层次从1开始计数),至少有255个结点。 F
1-12完全二叉树中,若一个结点没有左孩子,则它必是树叶。 T
1-13具有10个叶结点的二叉树中,有9个度为2的结点。 T
1-14哈夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。T
1-15设只包含根结点的二叉树高度为0,则高度为k的二叉树最小结点数为k+1。 T
1-16’关于树和二叉树二叉树是度为 2 的树。F
1-17在任意一棵二叉树中,分支结点的数目一定少于叶结点的数目。 F
1-18二叉树是一种特殊的树。F
1-19二叉树只能用二叉链表表示。F
1-20树形结构中元素之间存在一个对多个的关系。T
1-21某二叉树的前序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无左孩子。T
1-22某二叉树的后序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无右孩子。T
1-23非空的二叉树一定满足:某结点若有左孩子,则其中序前驱一定没有右孩子。 T
1-24用链表(llink-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n-1个空指针。F
1-25哈夫曼编码是一种最优的前缀码。对一个给定的字符集及其字符频率,其哈夫曼编码不一定是唯一的,但是每个字符的哈夫曼码的长度一定是唯一的。 F
1-26在哈夫曼编码中,当两个字符出现的频率相同时,其编码也相同,对于这种情况应特殊处理。F
1-27如果完全二叉树从根结点开始按层次遍历的输入序列为1,2,3,4,5,6,7,则该完全二叉树是二叉排序树。 F
1-28 对两棵具有相同关键字集合而形状不同的二叉排序树,按中序遍历它们得到的序列的顺序却是一致的。T
1-29在二叉排序树中,新结点总是作为树叶来插入的。T
1-30二叉排序树的查找效率和二叉排序树的髙度有关。T

2-1一个具有1025个结点的二叉树的高h为( A)个。
A.11至1025之间
B.10至1024之间
C.10
D.11

2-2具有1102个结点的完全二叉树一定有_C_个叶子结点。
A.1063
B.79
C.551
D.不确定

2-3要使一棵非空二叉树的先序序列与中序序列相同,其所有非叶结点须满足的条件是:B
A.结点的度均为1
B.只有右子树
C.结点的度均为2
D.只有左子树

2-4对 n 个互不相同的符号进行哈夫曼编码。若生成的哈夫曼树共有 115 个结点,则 n 的值是:B
A.57
B.58
C.56
D.60

2-5设一段文本中包含4个对象{a,b,c,d},其出现次数相应为{4,2,5,1},则该段文本的哈夫曼编码比采用等长方式的编码节省了多少位数?D
A.4
B.5
C.0
D.2

2-6如果一棵非空k(k≥2)叉树T中每个非叶子结点都有k个孩子,则称T为正则k叉树。若T有m个非叶子结点,则T中的叶子结点个数为:C
A.m(k−1)−1
B.mk
C.m(k−1)+1
D.m(k−1)

2-7在一棵度为 3 的树中,度为 2 的结点个数是 1,度为 0 的结点个数是 6,则度为 3 的结点个数是 A
A.2
B.无法确定
C.4
D.3

2-8如果二叉树的后序遍历结果是FDEBGCA,中序遍历结果是FDBEACG,那么该二叉树的前序遍历结果是什么?C
A.ABCDEFG
B.ABDFEGC
C.ABDFECG
D.ABDEFCG

2-9利用二叉链表存储树,则根结点的右指针是( D )。
A.指向最左孩子
B.指向最右孩子
C.非空
D.空

2-10对于图所示二叉树,试给出:
在这里插入图片描述
它的顺序存储结构 C
A.DGE^B ^ HFC^A
B.ABD^^ EG^^^ CF^H
C.ABCDEF^^^ G^^H
D.DBGE^ A^FHC

2-11已知字符集{ a, b, c, d, e, f, g, h }。若各字符的哈夫曼编码依次是 0100, 10, 0000, 0101, 001, 011, 11, 0001,则编码序列 0100011001001011110101 的译码结果是:C
A.acgabfh
B.adbagbb
C.afeefgd
D.afbeagd

2-12在下列存储形式中,( B )不是树的存储形式。
A.孩子兄弟表示法
B.顺序存储表示法
C.孩子链表表示法
D.双亲表示法

2-13设n、m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是 B
A.n是m子孙
B.n在m左方
C.n在m右方
D.n是m祖先

2-14某二叉树的中序序列和后序序列正好相反,则该二叉树一定是 D
A.任一结点无右孩子
B.高度等于其结点数
C.空或只有一个结点
D.任一结点无左孩子

2-15已知一棵二叉树的树形如下图所示,其后序序列为{ e, a, c, b, d, g, f }。树中与结点a同层的结点是:
在这里插入图片描述

B
A.c
B.d
C.g
D.f

2-16树最适合于用来表示 D
A 有序数据元素
B无序数据元素
C元素之间无联系的数据
D元素之间具有分支层次关系的数据

2-17设每个d叉树的结点有d个指针指向子树,有n个结点的d叉树有多少空链域? C
A nd
B n(d−1)
C n(d−1)+1
D 以上都不是

2-18 在下述结论中,正确的是: A
① 只有2个结点的树的度为1;
② 二叉树的度为2;
③ 二叉树的左右子树可任意交换;
④ 在最大堆(大顶堆)中,从根到任意其它结点的路径上的键值一定是按非递增有序排列的。
A①④
B②④
C①②③
D ②③④

2-19一棵二叉树中,双分支结点数为15,单分支结点数为30,则叶子结点数为(B)个。
A15
B16
C17
D 47

2-20深度为6的二叉树最多有( B )个结点。
A 64
B 63
C 32
D 31

2-21若将一棵树 T转化为对应的二叉树 BT,则下列对 BT 的遍历中,其遍历序列与 T 的后根遍历序列相同的是:B
A先序遍历
B中序遍历
C后序遍历
D按层遍历

2-22对于任意一棵高度为 5 且有 10 个结点的二叉树,若采用顺序存储结构保存,每个结点占 1 个存储单元(仅存放结点的数据信息),则存放该二叉树需要的存储单元的数量至少是:A
A 31
B 16
C 15
D 10

2-23将 {28, 15, 42, 18, 22, 5, 40} 逐个按顺序插入到初始为空的最小堆(小根堆)中。则该树的前序遍历结果为:C
A 5, 18, 15, 28, 22, 42, 40
B 5, 15, 18, 22, 28, 42, 40
C 5, 18, 28, 22, 15, 42, 40
D 5, 15, 28, 18, 22, 42, 40

2-24将{5, 2, 7, 3, 4, 1, 6}依次插入初始为空的二叉搜索树。则该树的后序遍历结果是:C
A 1, 2, 3, 4, 6, 7, 5
B 1, 4, 2, 6, 3, 7, 5
C 1, 4, 3, 2, 6, 7, 5
D 5, 4, 3, 7, 6, 2, 1

2-25将 {5, 2, 7, 3, 4, 1, 6} 逐个按顺序插入到初始为空的最小堆(小根堆)中。则该树的前序遍历结果为:D
A 1, 3, 2, 5, 4, 7, 6
B 1, 2, 3, 4, 5, 7, 6
C 1, 2, 5, 3, 4, 7, 6
D 1, 3, 5, 4, 2, 7, 6

2-26 将{ 3, 8, 9, 1, 2, 6 }依次插入初始为空的二叉搜索树。则该树的后序遍历结果是:C
A 2, 1, 3, 6, 9, 8
B 1, 2, 8, 6, 9, 3
C 2, 1, 6, 9, 8, 3
D 1, 2, 3, 6, 9, 8

2-27二叉树的中序遍历也可以循环地完成。给定循环中堆栈的操作序列如下(其中push为入栈,pop为出栈):

push(1), push(2), 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值