pandas中groupby和unique后的顺序

import pandas as pd

timev = ['2021-11-01 00:00:00', '2021-11-01 02:00:00', '2021-11-01 03:00:00', '2021-11-01 04:00:00', '2021-11-01 01:00:00']
valuev = [1, 2, 3, 4, 5]
df = pd.DataFrame({'datetime': timev, 'value': valuev})
print(df)
df_grp_h = df.groupby(by='datetime')
for i, data_i in df_grp_h:
    print(i)
print(df['datetime'].unique())

结果:
在这里插入图片描述
结果分析:
groupby自带了排序,因为groupby函数中有sort参数,且默认为True,对groupby分组后新的dataframe中索引进行排序,sort=True为升序。
而unique是提取唯一值的,函数本身不带排序功能。
所以要让两个结果一致,就需要在unique操作之前先对series进行.sort_values()排序。即最后一行代码应修改为

print(df['datetime'].sort_values().unique())

修改后的结果为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值