WSL下Ubuntu20.04环境配置(Anaconda、CUDA、Pytorch安装)与项目运行
(一) WSL+Ubuntu20.04安装
- 搜索 Windows PowerShell,用管理员权限打开,执行
wsl --install
指令下载 wsl。 - 在 Microsoft Store 中下载 Ubuntu20.04。
- 下载完 Ubuntu 后直接打开会出现问题,需要先下载内核:https://aka.ms/wsl2kernel,下载完成后双击安装即可。
- 安装好内核后再打开 Ubuntu,可以设置用户名和密码。(只接受包含小写字母、数字和特定字符的 UNIX 用户名,输入密码时切换成英文输入法)
(二)Ananconda安装
2.1 wegt命令下载
官方网站下载:wget https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.sh
下载后保存地址为\\wsl.localhost\Ubuntu-20.04\home\xql0204
,后续安装完成可删除。
2.2 安装
使用bash命令安装Anaconda,bash指令后面 -p 指定anaconda3安装路径。
sudo bash Anaconda3-2023.03-1-Linux-x86_64.sh -p /usr/local/anaconda3
本次Anaconda3安装位置为\\wsl.localhost\Ubuntu-20.04\usr\local
,安装过程中全部选择yes或者按Enter。
2.3 删除安装包(可选)
回到主目录(\\wsl.localhost\Ubuntu-20.04\home\xql0204
),运行: rm Anaconda3-2023.03-1-Linux-x86_64.sh
。
2.4 环境激活与创建
cd /usr/local/anaconda3 #进入Ananconda安装目录
source bin/activate #激活base环境
conda create -n pp python=3.7 #创建名为pp的python3.7环境(软链接保存在/home/xql0204/.conda/envs/pp)
conda activate pp # 激活环境
如果想要退出或删除环境,可以执行如下命令:
conda deactivate #退出当前环境
conda remove --pp --all #删除名为pp的虚拟环境
(三)CUDA安装与配置
3.1 CUDA安装
选择版本安装11.3,点进对应cuda toolkit版本选择的网址:CUDA Toolkit Archive | NVIDIA Developer,选择对应版本下载(注意选择WSL版),如下:
在Ubuntu终端按顺序执行指令:
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda-repo-wsl-ubuntu-11-3-local_11.3.1-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-11-3-local_11.3.1-1_amd64.deb
sudo apt-key add /var/cuda-repo-wsl-ubuntu-11-3-local/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda
3.2 CUDA验证与配置
安装成功后会在ubuntu/usr/loacl
文件下出现关于安装的cuda版本的文件夹,如下:
- 系统环境配置:
# 直接在终端运行
sudo touch /etc/profile.d/cuda.sh
echo 'export PATH=/usr/local/cuda/bin/:$PATH' | sudo tee -a /etc/profile.d/cuda.sh
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:/usr/lib/wsl/lib/:$LD_LIBRARY_PATH' | sudo tee -a /etc/profile.d/cuda.sh
# 运行vim ~/.bsahrc,在文件末尾增加以下代码,保存后运行source ~/.bashrc
export PAHT=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda-11.3
- 命令验证:关闭ubuntu终端重新打开输入nvcc -V,显示如下信息表示安装成功
nvcc -V
(四)Pytorch安装
4.1 Pytorch安装
进入Pytorch官网(https://pytorch.org/get-started/previous-versions/),选择自己想要的Pytorch与CUDA版本,运行相关指令:
#安装了与 CUDA11.1 兼容的 Pytorch1.8
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia
Note:在pp这个虚拟环境下执行命令,相关依赖包会被安装在\wsl.localhost\Ubuntu-20.04\home\xql0204.conda\envs\pp下。
如果想知道自己显卡版本对应CUDA版本可以前往(https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html)查看,理论上可以安装低版本CUDA。
4.2 验证
# 检查 PyTorch 是否正确安装并与 GPU 兼容
import torch
print(torch.cuda.is_available())
print(torch.cuda.current_device())
print(torch.cuda.get_device_name(0))
验证成功如下:
(五)项目导入与运行
5.1 项目导入
cp -r /mnt/d/PointPainting-notes /home/xql0204/ #将D盘文件复制到Ubuntu中
5.2 VSCode远程运行
在VSCode中安装WSL插件,点击左下角WSL,链接到WSL,打开项目文件夹。新建终端,cd到所在目录,即可开始编译。