
机器学习
文章平均质量分 67
机器学习
皮卡丘黄了吧唧丿
这个作者很懒,什么都没留下…
展开
-
dead ReLU的个人理解
假设输入到ReLU的数据服从正态分布且对称点在x轴右侧,则说明大部分的数据都是可以激活ReLU的,可能会出现一种情况:即通过之前的线性变换。导致ReLU右侧的斜率变得很陡,那么梯度就会很大,从而w会发生较大的变化。因为在ReLU之前还要线性变换,可能就因为这一次w的变化使得。的输出分布的中心向左偏,例如-0.1,这就导致大部分数据都会被ReLU重置为0,梯度也为0,w不再更新,假设某ReLu层的输入x满足高斯分布,中心在+0.1,方差不会异常大。大多数输入为正,经过激活后保持原值,负输入将全部归零;原创 2023-08-15 21:23:31 · 291 阅读 · 0 评论 -
KNN的维度灾难
变量增加=维度增加,如果想要取得更好的效果,该维度下就要让数据更密集(即训练集更大),但如上图所示从起初的4个点到二维、三维下,需要将整个空间布满的点数成指数级增长,显然不可能有着么多图片供我们训练。KNN中的维度灾难为,在高维空间,数据变得异常稀疏,这就使得即使是最近的邻居数据点(相对近而已),所需计算数据点之间的距离也变得异常得远:例如二维下两点间距离公式。,而三维下又加一组变量,显然在距离上的变化变得更为敏感了。这导致了随着变量的增加,训练集所要求的数据量呈指数级的增长,计算量也随之变得异常大。原创 2023-08-05 22:24:44 · 417 阅读 · 0 评论 -
在tensorflow2.x上使用1.x版本常见错误
最近想换个框架,然后就选了tensorlow,用的是这本教材说实话,写的一般,而且它里面的很多程序已经用不了了,tensorflow比较特别,它现在的高版本不适应低版本,我自己拆过很多坑,比如如何在version2里面用version1,以及tensorboard打不开等等情况。我在下面列出来,有需要的可以看一下,希望大家不要再踩坑了!!!!!我就举相似的例子,实际情况要根据那么自己出的问题来解决,另外我用的是tensorflow2.5第一个:出现类似报错:error: AttributeError:原创 2021-07-14 10:56:34 · 1329 阅读 · 1 评论 -
《机器学习实战》:通俗理解支持向量机
代码、数据集、文章我都是放到了https://github.com/AAAZC/SVM_blog上面了,文章在issues里面,建议上这个网站看《机器学习实战》:通俗理解支持向量机关于这篇文章 《机器学习实战》终究只是一本实践型的书籍,它更多地是为了带着读者去了解算法的使用,而减少了理论部分的比重。就如第六章:支持向量机,它里面最关键的分类器求解优化问题只有不到两页。支持向量机的知识本来就晦涩难懂,这下更难看懂了,但是这本书仍然是一本很好的入门教材,我相信还有很多的同学在使用这本优秀的教材,所以我原创 2021-07-14 11:18:18 · 277 阅读 · 0 评论 -
关于卷积后通道数变化的问题
如下图所示,这个是MNIST的神经网络,在学习CNN的过程中我我发现一个问题,为什么单通道的输入图像卷积之后变成了32个通道这个是我自己的想法:官方的说法就是通道数就是使用的卷积核的个数,其实说的通俗一些就是:像下面这张图一样,假设我们输入的图是RGB3通道的,如果我们只卷积一次,就只会输出一个值,但是输入图片是三个通道的,现在通道倒反还减少了,我觉得这样不好,所以我又做了一个卷积核再让他卷积(卷积核的形状一样,但是里面的w都是随机值,所以不用担心卷积的结果会重复),于是现在输出就有两个了,然后我们就可原创 2021-07-16 11:51:07 · 10349 阅读 · 2 评论 -
学习特征抽取时对线性代数知识的思考
矩阵是一种映射原创 2022-01-14 17:10:08 · 110 阅读 · 0 评论 -
【sklearn库】fit_transform()的含义
在学习数据准备的时候遇到一个问题让我想了很久:就是from sklearn.preprocessing import LabelEncoder里面的这个fit_transform到底是个什么意思?它输出的序列到底是什么?我翻了很多本站点的文章都没能解决我的问题,查的资料都说这个是将数据标准化了,那你倒是说啊,以什么为标准化,标准化的方法太多了。在想清楚以后我给出我的理解:我们直接看代码#我们先看看fit是啥from sklearn import preprocessingle = preproc原创 2021-04-05 22:27:15 · 11343 阅读 · 0 评论