学习特征抽取时对线性代数知识的思考

矩阵是一种映射,
为什么说矩阵是一种映射,我想可以用单位平面进行解释:
如下图, A C ⃗ = [ 0 , 1 ] T \vec{AC}=[0, 1]^T AC =[0,1]T, A B ⃗ = [ 1 , 0 ] T \vec{AB}=[1,0]^T AB =[1,0]T
请添加图片描述
现在给出一个矩阵 α = [ 0.5 0 0 1.5 ] \alpha=\begin{bmatrix} 0.5&0\\ 0&1.5\\ \end{bmatrix} α=[0.5001.5]
做这个矩阵与两向量间的乘法,即 α ∗ A B ⃗ = [ 1.5 , 0 ] T , α ∗ A C ⃗ = [ 0 , 0.5 ] T \alpha*\vec{AB}=[1.5,0]^T,\alpha*\vec{AC}=[0,0.5]^T αAB =[1.5,0]T,αAC =[0,0.5]T,把运算结果表现在坐标轴上,可以发现原来的单位坐标轴变成了x为1.5,y为0.5的坐标轴了:其实也就是原来这组数被映射到了矩阵的维度上了,说白了就是被缩放了,这个可能不够清楚,我在用一个更详细的例子来说明
在这里插入图片描述

矩阵的混合是一种空间上的缩放和旋转,行列式是矩阵的放大倍率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值