矩阵是一种映射,
为什么说矩阵是一种映射,我想可以用单位平面进行解释:
如下图,
A
C
⃗
=
[
0
,
1
]
T
\vec{AC}=[0, 1]^T
AC=[0,1]T,
A
B
⃗
=
[
1
,
0
]
T
\vec{AB}=[1,0]^T
AB=[1,0]T
现在给出一个矩阵
α
=
[
0.5
0
0
1.5
]
\alpha=\begin{bmatrix} 0.5&0\\ 0&1.5\\ \end{bmatrix}
α=[0.5001.5]
做这个矩阵与两向量间的乘法,即
α
∗
A
B
⃗
=
[
1.5
,
0
]
T
,
α
∗
A
C
⃗
=
[
0
,
0.5
]
T
\alpha*\vec{AB}=[1.5,0]^T,\alpha*\vec{AC}=[0,0.5]^T
α∗AB=[1.5,0]T,α∗AC=[0,0.5]T,把运算结果表现在坐标轴上,可以发现原来的单位坐标轴变成了x为1.5,y为0.5的坐标轴了:其实也就是原来这组数被映射到了矩阵的维度上了,说白了就是被缩放了,这个可能不够清楚,我在用一个更详细的例子来说明
矩阵的混合是一种空间上的缩放和旋转,行列式是矩阵的放大倍率