导入需要的库
import numpy as np
import pandas as pd
练习一
读取 catNames2.csv 文件
cat=pd.read_csv(r'catNames2.csv')
找到所有的使用次数超过800的猫的名字
cat[cat['Count_AnimalName']>800]
获取用次数最高的名字
# 降序排列 第一个即为最高
cat.sort_values(by='Count_AnimalName',ascending=False)
练习二
读取 五粮液2020.xlsx 数据,指定索引为0列为行索引
wu=pd.read_excel(r'五粮液2020.xlsx',index_col=0)
查看该数据的基本信息
wu.info()
计算每一天各指标的差异值
# 后一天减去前一天
wu.diff()
计算其 pre_close 的增长率
# (后-前)/前
wu['pre_close'].pct_change()
将 pre_close 的增长率添加至 wly_data 数据中
wu['pct_change']=wu['pre_close'].pct_change()
将 pct_change该列呈现的 NaN用0填充
# inplace=True设置改变原数据
wu['pct_change'].fillna(0,inplace=True)
查看 pre_close 与 pct_change 的相关性
wu['pre_close'].corr(wu['pct_change'])
# -0.025698853993974664
将 pct_change 这列乘以100 保留两位小数 成为百分比
# 定义一个匿名函数
f=lambda x:'%.2f%%'%(x*100)
wu['pct_change']=wu['pct_change'].apply(f)
最终数据结果