Python数据分析—Pandas作业二


导入需要的库

import numpy as np
import pandas as pd

练习一

读取 catNames2.csv 文件

cat=pd.read_csv(r'catNames2.csv')

找到所有的使用次数超过800的猫的名字

cat[cat['Count_AnimalName']>800]

获取用次数最高的名字

# 降序排列 第一个即为最高
cat.sort_values(by='Count_AnimalName',ascending=False)

练习二

在这里插入图片描述
读取 五粮液2020.xlsx 数据,指定索引为0列为行索引

wu=pd.read_excel(r'五粮液2020.xlsx',index_col=0)

查看该数据的基本信息

wu.info()

计算每一天各指标的差异值

# 后一天减去前一天
wu.diff()

在这里插入图片描述

计算其 pre_close 的增长率

# (后-前)/前
wu['pre_close'].pct_change()

在这里插入图片描述

将 pre_close 的增长率添加至 wly_data 数据中

wu['pct_change']=wu['pre_close'].pct_change()

将 pct_change该列呈现的 NaN用0填充

# inplace=True设置改变原数据
wu['pct_change'].fillna(0,inplace=True)

查看 pre_close 与 pct_change 的相关性

wu['pre_close'].corr(wu['pct_change'])
# -0.025698853993974664

将 pct_change 这列乘以100 保留两位小数 成为百分比

# 定义一个匿名函数
f=lambda x:'%.2f%%'%(x*100)
wu['pct_change']=wu['pct_change'].apply(f)

最终数据结果

在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值