Python数据分析
文章平均质量分 64
Python数据分析
对流层的酱猪肘
这个作者很懒,什么都没留下…
展开
-
Python数据分析—Pandas数据规整
数据规整一、索引二、分层索引三、数据合并1、merge方法2、join方法3、concat方法四、数据分组与聚合一、索引# 查看索引df.index# 指定索引,但个数必须保持一致df.index=[]# 重置索引,个数无需一致,重置索引不同则用NAN填充,相当于映射的关系df.reindex([])# 指定某一列作为行索引df.set_index("列名")# 指定多列为行索引df.set_index(["",""])# 取索引的唯一值df.index.unique()二、分原创 2021-02-05 19:13:31 · 403 阅读 · 0 评论 -
Python数据分析—Pandas作业四
Day4小练习练习1练习2导入需要的库import numpy as npimport pandas as pd小练习xin=pd.read_csv(r'starbucks_store_worldwide.csv',usecols=['Brand','Country','City'])# 首先选取品牌为星巴克的数据xin=xin[xin['Brand'].isin(['Starbucks'])]del xin['Brand']需求1:分析星巴克在中国分布多还是美国分布多# 第一种可以原创 2021-02-03 21:37:51 · 815 阅读 · 5 评论 -
Python数据分析—Pandas数据清洗
数据清洗一、缺失值1、查看缺失值2、过滤缺失值3、填充缺失值二、异常值三、重复值1、查看重复值2、删除重复值四、离散化数据清洗实质上也是数据质量分析,检查并处理原数据中是否存在不符合要求的数据。常见的有缺失值、异常值、重复数据一、缺失值1、查看缺失值# 返回是否是缺失值的布尔值df.isna()# 返回是否是缺失值的布尔值df.isnull()# 返回值是isnull的反集df.notnull()# 或者更直观的df.isnull().sum()而在数据中赋值为None也被当作NA原创 2021-02-03 21:32:44 · 274 阅读 · 0 评论 -
Python数据分析—Pandas作业三
Day3练习1练习2导入需要的库import numpy as npimport pandas as pd练习1读取北向.csv 指定 trade_date 为 行索引bei=pd.read_csv(r'北向.csv',index_col=1)查看数据的基本信息 有无缺失值 对其缺失值进行处理bei.info()bei.isnull().sum()index 0ggt_ss 34ggt_sz 34hgt原创 2021-01-29 21:13:53 · 379 阅读 · 0 评论 -
Python数据分析—Pandas作业二
Day2练习一练习二导入需要的库import numpy as npimport pandas as pd练习一读取 catNames2.csv 文件cat=pd.read_csv(r'catNames2.csv')找到所有的使用次数超过800的猫的名字cat[cat['Count_AnimalName']>800]获取用次数最高的名字# 降序排列 第一个即为最高cat.sort_values(by='Count_AnimalName',ascending=False)原创 2021-01-27 18:07:48 · 309 阅读 · 4 评论 -
Python数据分析—Pandas中的DataFrame笔记全
DataFrame操作一、DataFrame介绍一、DataFrame介绍DataFrame是二维数组,表示的是矩阵的数据表,它包含已排序的列集合,每一列可以是不同的值类型(数值,字符串,布尔值)。原创 2021-01-27 17:03:44 · 2331 阅读 · 0 评论 -
Python数据分析—Pandas作业一
Day1练习一练习二练习三导入所需要的库import numpy as npimport pandas as pd练习一通过 Pandas 创建 学生成绩表的 excel 文件stu_names = ["胡歌","林更新","金世佳","丑娟"]courses = ['语文', '数学', '英语', 'Python', '体育']data = np.array([[87., 74., 98., 84., np.nan],[79., 69., 61., 99., np.nan],[84.,原创 2021-01-25 17:49:34 · 453 阅读 · 0 评论 -
Python数据分析—Pandas中的Series
Series操作一、Series介绍二、Series数组创建1、根据列表创建2、根据字典创建三、数据类型四、设置数组名字1、数组名字2、索引名字五、预览数据六、索引与值七、索引与切片八、Series运算一、Series介绍Series是一维数组型对象,包含了一个值序列,并且包含了数据标签,称为索引。二、Series数组创建pd.Series(data=None,index=None,dtype=None,name=None,copy=False)参数作用data创建数组的数据原创 2021-01-22 22:36:01 · 601 阅读 · 0 评论 -
Python数据分析—numpy操作本地数据及合并多个表格
numpy操作本地数据及合并多个表格一、写入本地数据二、读取本地数据三、合并两个表格一、写入本地数据np.savetxt(fname)参数意思fname文件路径dtype数据类型delimiter分隔符fmt写入文件的格式,例如:%d,%.2f,%.18econverters对数据预处理。{0:func}第0列进行func函数预处理header指定为表头scores = np.random.randint(0,100,size=(40原创 2021-01-18 18:09:41 · 1474 阅读 · 1 评论 -
Python数据分析—numpy数组运算练习
numpy作业作业1练习1代码练习2代码练习3代码作业2作业1导入相关的库import numpy as npimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] # 中文plt.rcParams['axes.unicode_minus'] = False # 负号练习1代码方法一canyin=pd.read_csv(r'D:\餐饮.csv'原创 2021-01-17 18:16:00 · 568 阅读 · 2 评论