6.2.2 RDD编程高阶【序列化、依赖关系、持久化缓存、容错机制、分区、累加器、广播变量】、RDD编程优化、Shuffle原理

Spark Core



第4节 RDD编程高阶

Spark原理

4.1 序列化

在实际开发中会自定义一些对RDD的操作,此时需要注意的是:

  • 初始化工作是在Driver端进行的
  • 实际运行程序是在Executor端进行的

这就涉及到了进程通信,是需要序列化的。
可以简单的认为SparkContext代表Driver。

package cn.lagou.sparkcore

import org.apache.spark.{SparkConf, SparkContext}

class MyClass1(x: Int){
  val num: Int = x
}

case class MyClass2(num: Int)

class MyClass3(x: Int) extends Serializable {
  val num: Int = x
}

object SerializableDemo {
  def main(args: Array[String]): Unit = {
    // 初始化
    val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val o1 = new MyClass1(8)
    //    println(s"o1.num = ${o1.num}")

    val rdd1 = sc.makeRDD(1 to 20)
    // 方法
    def add1(x: Int) = x + 100
    // 函数
    val add2 = add1 _

    // 函数、方法都具备序列化和反序列化的能力
    //    rdd1.map(add1(_)).foreach(println)
    //    println("****************************************************")
    //    rdd1.map(add2(_)).foreach(println)

    // 普通的类不具备序列化能力
    // 下面的语句会报错,Task not serializable。错误的原因就是因为: MyClass1 类不具备序列化能力
    val object1 = new MyClass1(20)
    val i = 20
    //rdd1.map(x => object1.num + x).foreach(println)

    // 解决方案一:使用case class
    val object2 = MyClass2(20)
    // rdd1.map(x => object2.num + x).foreach(println)

    // 解决方案二:MyClass1 实现 Serializable 接口
    val object3 = new MyClass3(20)
    rdd1.map(x => object3.num + x).foreach(println)

    sc.stop()
  }
}

在这里插入图片描述

4.2 RDD依赖关系

RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列
Lineage(血统)记录下来,以便恢复丢失的分区。

RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失
时,可根据这些信息来重新运算和恢复丢失的数据分区。
在这里插入图片描述
RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow
dependency)和宽依赖(wide dependency)。 依赖有2个作用:其一用来解决数
据容错;其二用来划分stage。

窄依赖:1:1 或 n:1
宽依赖:n:m;意味着有 shuffle

要能够准确、迅速的区分哪些算子是宽依赖;
在这里插入图片描述
在这里插入图片描述
DAG(Directed Acyclic Graph) 有向无环图。原始的RDD通过一系列的转换就就形成
了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage:

  • 对于窄依赖,partition的转换处理在Stage中完成计算
  • 对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始
    接下来的计算
  • 宽依赖是划分Stage的依据

在这里插入图片描述
RDD任务切分中间分为:Driver programe、Job、Stage(TaskSet)和Task

  • Driver program:初始化一个SparkContext即生成一个Spark应用
  • Job:一个Action算子就会生成一个Job
  • Stage:根据RDD之间的依赖关系的不同将Job划分成不同的Stage,遇到一个宽依赖则划分一个Stage
  • Task:Stage是一个TaskSet,将Stage划分的结果发送到不同的Executor执行即为一个Task
  • Task是Spark中任务调度的最小单位;每个Stage包含许多Task,这些Task执行的计算逻辑相同的,计算的数据是不同的

注意:Driver programe->Job->Stage-> Task每一层都是1对n的关系。

// 窄依赖
val rdd1 = sc.parallelize(1 to 10, 1)
val rdd2 = sc.parallelize(11 to 20, 1)
val rdd3 = rdd1.union(rdd2)
rdd3.dependencies.size
rdd3.dependencies
// 打印rdd1的数据
rdd3.dependencies(0).rdd.collect
// 打印rdd2的数据
rdd3.dependencies(1).rdd.collect

在这里插入图片描述

// 宽依赖
val random = new scala.util.Random
val arr = (1 to 100).map(idx => random.nextInt(100))
val rdd1 = sc.makeRDD(arr).map((_, 1))
val rdd2 = rdd1.reduceByKey(_+_)
// 观察依赖
rdd2.dependencies
rdd2.dependencies(0).rdd.collect
rdd2.dependencies(0).rdd.dependencies(0).rdd.collect

在这里插入图片描述

再谈WordCount

val rdd1 = sc.textFile("/wcinput/wc.txt")
val rdd2 = rdd1.flatMap(_.split("\\s+"))
val rdd3 = rdd2.map((_, 1))
val rdd4 = rdd3.reduceByKey(_+_)
val rdd5 = rdd4.sortByKey()
rdd5.count


// 查看RDD的血缘关系
rdd1.toDebugString
rdd5.toDebugString

在这里插入图片描述

// 查看依赖
rdd1.dependencies
rdd1.dependencies(0).rdd
rdd5.dependencies
rdd5.dependencies(0).rdd

在这里插入图片描述

// 查看最佳优先位置
val hadoopRDD = rdd1.dependencies(0).rdd
hadoopRDD.preferredLocations(hadoopRDD.partitions(0))
# 使用 hdfs 命令检查文件情况
hdfs fsck /wcinput/wc.txt -files -blocks -locations

在这里插入图片描述
在这里插入图片描述
本例中整个过程分为1个job,3个Stage;6个Task
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
为什么这里显示有2个job?参见RDD分区器

4.3 RDD持久化/缓存

涉及到的算子:persist、cache、unpersist;都是 Transformation
缓存是将计算结果写入不同的介质,用户定义可定义存储级别(存储级别定义了缓存
存储的介质,目前支持内存、堆外内存、磁盘);

通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度;

RDD持久化或缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式
算法和快速交互式查询的关键因素;

Spark速度非常快的原因之一,就是在内存中持久化(或缓存)一个数据集。当持久
化一个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此数据集
(或者衍生出的数据集)进行的其他动作(Action)中重用。这使得后续的动作变得
更加迅速;

使用persist()方法对一个RDD标记为持久化。之所以说“标记为持久化”,是因为出现
persist()语句的地方,并不会马上计算生成RDD并把它持久化,而是要等到遇到第一
个行动操作触发真正计算以后,才会把计算结果进行持久化;
在这里插入图片描述
通过persist()或cache()方法可以标记一个要被持久化的RDD,持久化被触发,RDD
将会被保留在计算节点的内存中并重用;

什么时候缓存数据,需要对空间和速度进行权衡。一般情况下,如果多个动作需要用
到某个 RDD,而它的计算代价又很高,那么就应该把这个 RDD 缓存起来;

缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除。RDD的缓存的容
错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列的转
换,丢失的数据会被重算。RDD的各个Partition是相对独立的,因此只需要计算丢
失的部分即可,并不需要重算全部Partition。

persist()的参数可以指定持久化级别参数;
使用cache()方法时,会调用persist(MEMORY_ONLY),即:

cache() == persist(StorageLevel.Memeory_ONLY)

使用unpersist()方法手动地把持久化的RDD从缓存中移除;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
cache RDD 以 分区为单位;程序执行完毕后,系统会清理cache数据;

val list = List("Hadoop","Spark","Hive")
val rdd = sc.parallelize(list)
// 调用persist(MEMORY_ONLY)
// 但语句执行到这里,并不会缓存rdd,因为这时rdd还没有被计算生成
rdd.cache()
// 第一次Action操作,触发一次真正从头到尾的计算
// 这时才会执行上面的rdd.cache(),将rdd放到缓存中
rdd.count()
// 第二次Action操作,不需要触发从头到尾的计算
// 只需要重复使用上面缓存中的rdd
rdd.collect().mkString(",")

在这里插入图片描述
被缓存的RDD在DAG图中有一个绿色的圆点(这个执行上面 rdd.count() 之后才会有)。

4.4 RDD容错机制Checkpoint

涉及到的算子:checkpoint;也是 Transformation
Spark中对于数据的保存除了持久化操作之外,还提供了检查点的机制;

检查点本质是通过将RDD写入高可靠的磁盘,主要目的是为了容错。检查点通过将
数据写入到HDFS文件系统实现了RDD的检查点功能。

Lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后
有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销。

cache 和 checkpoint 是有显著区别的,缓存把 RDD 计算出来然后放在内存中,但
是 RDD 的依赖链不能丢掉, 当某个点某个 executor 宕了,上面 cache 的RDD就会
丢掉, 需要通过依赖链重放计算。不同的是,checkpoint 是把 RDD 保存在 HDFS
中,是多副本可靠存储,此时依赖链可以丢掉,所以斩断了依赖链。

以下场景适合使用检查点机制:

  1. DAG中的Lineage过长,如果重算,则开销太大
  2. 在宽依赖上做 Checkpoint 获得的收益更大

与cache类似 checkpoint 也是 lazy 的。

val rdd1 = sc.parallelize(1 to 100000)
// 设置检查点目录
sc.setCheckpointDir("/tmp/checkpoint")
val rdd2 = rdd1.map(_*2)
rdd2.checkpoint
// checkpoint是lazy操作
scala> rdd2.isCheckpointed
res22: Boolean = false

// checkpoint之前的rdd依赖关系
rdd2.dependencies(0).rdd
rdd2.dependencies(0).rdd.collect

在这里插入图片描述

// 执行一次action,触发checkpoint的执行
scala> rdd2.count
res6: Long = 100000                                                             

scala> rdd2.isCheckpointed
res7: Boolean = true

// 再次查看RDD的依赖关系。可以看到checkpoint后,RDD的lineage被截断,变成从checkpointRDD开始(只能找到val rdd2 = rdd1.map(_*2))
rdd2.dependencies(0).rdd
rdd2.dependencies(0).rdd.collect
//查看RDD所依赖的checkpoint文件
rdd2.getCheckpointFile

在这里插入图片描述
备注:checkpoint的文件作业执行完毕后不会被删除

4.5 RDD的分区

spark.default.parallelism:(默认的并发数)= 2
当配置文件spark-default.conf中没有显示的配置,则按照如下规则取值:

1、本地模式

spark-shell --master local[N] spark.default.parallelism = N
spark-shell --master local spark.default.parallelism = 1

2、伪分布式(x为本机上启动的executor数,y为每个executor使用的core数,z为每个 executor使用的内存)

spark-shell --master local-cluster[x,y,z]
spark.default.parallelism = x * y

3、分布式模式(yarn & standalone)

spark.default.parallelism = max(应用程序持有executor的core总数, 2)

备注:total number of cores on all executor nodes or 2, whichever is larger

经过上面的规则,就能确定了spark.default.parallelism的默认值(配置文件spark.default.conf中没有显示的配置。如果配置了,则spark.default.parallelism = 配置的值)

SparkContext初始化时,同时会生成两个参数,由上面得到的spark.default.parallelism推导出这两个参数的值

// 从集合中创建RDD的分区数
sc.defaultParallelism = spark.default.parallelism
// 从文件中创建RDD的分区数
sc.defaultMinPartitions = min(spark.default.parallelism, 2)

以上参数确定后,就可以计算 RDD 的分区数了。
在这里插入图片描述

创建 RDD 的几种方式:

1、通过集合创建

// 如果创建RDD时没有指定分区数,则rdd的分区数 = sc.defaultParallelism
val rdd = sc.parallelize(1 to 100)
rdd.getNumPartitions

备注:简单的说RDD分区数等于cores总数

2、通过textFile创建

val rdd = sc.textFile(“data/start0721.big.log”)
rdd.getNumPartitions

如果没有指定分区数:

  • 本地文件。rdd的分区数 = max(本地文件分片数, sc.defaultMinPartitions)
  • HDFS文件。 rdd的分区数 = max(hdfs文件 block 数, sc.defaultMinPartitions)

备注:

  • 本地文件分片数 = 本地文件大小 / 32M
  • 如果读取的是HDFS文件,同时指定的分区数 < hdfs文件的block数,指定的数不生效。

4.6 RDD分区器

以下RDD分别是否有分区器,是什么类型的分区器

val rdd1 = sc.textFile("/wcinput/wc.txt")
rdd1.partitioner
res0: Option[org.apache.spark.Partitioner] = None
#没有

val rdd2 = rdd1.flatMap(_.split("\\s+"))
rdd2.partitioner
res1: Option[org.apache.spark.Partitioner] = None
#没有

val rdd3 = rdd2.map((_, 1))
rdd3.partitioner
res2: Option[org.apache.spark.Partitioner] = None
#没有

val rdd4 = rdd3.reduceByKey(_+_)
rdd4.partitioner
res3: Option[org.apache.spark.Partitioner] = Some(org.apache.spark.HashPartitioner@2)
#有,HashPartitioner

val rdd5 = rdd4.sortByKey()
rdd5.partitioner
res3: Option[org.apache.spark.Partitioner] = Some(org.apache.spark.RangePartitioner@2)
#有,RangePartitioner

Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)

只有Key-Value类型的RDD才可能有分区器,Value类型的RDD分区器的值是None

分区器的作用及分类:
在 PairRDD(key,value) 中,很多操作都是基于key的,系统会按照key对数据进行重
组,如groupbykey;

数据重组需要规则,最常见的就是基于 Hash 的分区,此外还有一种复杂的基于抽样
Range 分区方法;
在这里插入图片描述
HashPartitioner:最简单、最常用,也是默认提供的分区器。对于给定的key,计
算其hashCode,并除以分区的个数取余,如果余数小于0,则用 余数+分区的个
数,最后返回的值就是这个key所属的分区ID。该分区方法可以保证key相同的数据
出现在同一个分区中。

用户可通过partitionBy主动使用分区器,通过partitions参数指定想要分区的数量。

val rdd1 = sc.makeRDD(1 to 100).map((_, 1)) 
rdd1.getNumPartitions

// 仅仅是将数据大致平均分成了若干份;rdd并没有分区器
rdd1.glom.collect.foreach(x=>println(x.toBuffer))
rdd1.partitioner

// 主动使用 HashPartitioner
val rdd2 = rdd1.partitionBy(new org.apache.spark.HashPartitioner(10))
rdd2.glom.collect.foreach(x=>println(x.toBuffer))

// 主动使用 RangePartitioner
val rdd3 = rdd1.partitionBy(new org.apache.spark.RangePartitioner(10, rdd1))
rdd3.glom.collect.foreach(x=>println(x.toBuffer))

在这里插入图片描述
Spark的很多算子都可以设置 HashPartitioner 的值:
在这里插入图片描述
RangePartitioner:简单的说就是将一定范围内的数映射到某一个分区内。在实现
中,分界的算法尤为重要,用到了水塘抽样算法。sortByKey会使用RangePartitioner。
在这里插入图片描述
现在的问题:在执行分区之前其实并不知道数据的分布情况,如果想知道数据分区就
需要对数据进行采样
Spark中RangePartitioner在对数据采样的过程中使用了水塘采样算法

水塘采样:从包含n个项目的集合S中选取k个样本,其中n为一很大或未知的数量,
尤其适用于不能把所有n个项目都存放到主内存的情况;

在采样的过程中执行了collect()操作,引发了Action操作。

自定义分区器:Spark允许用户通过自定义的Partitioner对象,灵活的来控制RDD的分区方式。

实现自定义分区器按以下规则分区:

  • 分区0 < 100
  • 100 <= 分区1 < 200
  • 200 <= 分区2 < 300
  • 300 <= 分区3 < 400
  • … …
  • 900 <= 分区9 < 1000
package cn.lagou.sparkcore

import org.apache.spark.rdd.RDD
import org.apache.spark.{Partitioner, SparkConf, SparkContext}

import scala.collection.immutable

class MyPartitioner(n: Int) extends Partitioner {
  //有多少个分区数
  override def numPartitions: Int = n

  //给定key,如果去分区
  override def getPartition(key: Any): Int = {
    val k=key.toString.toInt
    k / 100
  }

}

object UserDefinedPartitioner{
  def main(args: Array[String]): Unit = {
    // 创建SparkContext
    val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    // 业务逻辑
    val random =scala.util.Random
    val arr: immutable.IndexedSeq[Int] = (1 to 100).map(idx => random.nextInt(1000))
    val rdd1: RDD[(Int, Int)] = sc.makeRDD(arr).map((_, 1))
    rdd1.glom.collect.foreach(x=> println(x.toBuffer))

    println("********************************************************")
    val rdd2: RDD[(Int, Int)] = rdd1.partitionBy(new MyPartitioner(11))
    rdd2.glom.collect.foreach(x=> println(x.toBuffer))

    // 关闭SparkContext
    sc.stop()
  }
}

在这里插入图片描述

4.7 广播变量

有时候需要在多个任务之间共享变量,或者在任务(Task)和Driver Program之间
共享变量。为了满足这种需求,Spark提供了两种类型的变量:

  • 广播变量(broadcast variables)
  • 累加器(accumulators)

广播变量、累加器主要作用是为了优化Spark程序。

广播变量将变量在节点的 Executor 之间进行共享(由Driver广播出去);
广播变量用来高效分发较大的对象。向所有工作节点(Executor)发送一个较大的只读值,以供一个或多个操作使用。

使用广播变量的过程如下:

  • 对一个类型 T 的对象调用 SparkContext.broadcast 创建出一个 Broadcast[T]对象。 任何可序列化的类型都可以这么实现(在 Driver 端)
  • 通过 value 属性访问该对象的值(在 Executor 中)
  • 变量只会被发到各个 Executor 一次,作为只读值处理

在这里插入图片描述
广播变量的相关参数:

  • spark.broadcast.blockSize(缺省值:4m)
  • spark.broadcast.checksum(缺省值:true)
  • spark.broadcast.compress(缺省值:true)
广播变量的运用(Map Side Join)

普通的Join操作:
在这里插入图片描述
Map Side Join:
在这里插入图片描述

package cn.lagou.sparkcore

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object JoinDemo {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getCanonicalName.init)
    val sc = new SparkContext(conf)
    // 设置本地文件切分大小(按128M切一个块,默认是4M)
    sc.hadoopConfiguration.setLong("fs.local.block.size", 128*1024*1024)

    // map task:数据准备
    val productRDD: RDD[(String, String)] = sc.textFile("data/lagou_product_info.txt")
      .map { line =>
        val fields = line.split(";")
        (fields(0), line)
      }

    val orderRDD: RDD[(String, String)] = sc.textFile("data/orderinfo.txt",8 )
      .map { line =>
        val fields = line.split(";")
        (fields(2), line)
      }

    // join有shuffle操作
    val resultRDD: RDD[(String, (String, String))] = productRDD.join(orderRDD)

    println(resultRDD.count())

    Thread.sleep(1000000)

    sc.stop()
  }
}

执行时间46s,shuffle read 450M

package cn.lagou.sparkcore

import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object MapSideJoin {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getCanonicalName.init)
    val sc = new SparkContext(conf)
    // 设置本地文件切分大小(按128M切一个块,默认是4M)
    sc.hadoopConfiguration.setLong("fs.local.block.size", 128*1024*1024)

    val productMap: collection.Map[String, String] = sc.textFile("data/lagou_product_info.txt")
      .map { line =>
        val fields = line.split(";")
        (fields(0), line)
      }.collectAsMap()
    // map task:数据准备(广播)
    val productBC: Broadcast[collection.Map[String, String]] = sc.broadcast(productMap)

    val orderRDD: RDD[(String, String)] = sc.textFile("data/orderinfo.txt",8 )
      .map { line =>
        val fields = line.split(";")
        (fields(2), line)
      }

    // 完成map side join 操作
    // RDD[(String, (String, String))] :(pid,(商品信息,订单信息))
    val resultRDD: RDD[(String, (String, String))] = orderRDD.map { case (pid, orderInfo) =>
      val productInfoMap: collection.Map[String, String] = productBC.value
      val productInfoString: String = productInfoMap.getOrElse(pid, null)
      (pid, (productInfoString, orderInfo))
    }

    println(resultRDD.count())

    Thread.sleep(1000000)

    sc.stop()
  }
}

执行时间14s,没有shuffle
在这里插入图片描述

4.8 累加器

累加器的作用:可以实现一个变量在不同的 Executor 端能保持状态的累加;
累计器在 Driver 端定义,读取;在 Executor 中完成累加;
累加器也是 lazy 的,需要 Action 触发;Action触发一次,执行一次,触发多次,执行多次;
累加器一个比较经典的应用场景是用来在 Spark Streaming 应用中记录某些事件的数量;

val data = sc.makeRDD(Seq("hadoop map reduce", "spark mllib"))
// 方式1
val count1 = data.flatMap(line => line.split("\\s+")).map(word=> 1).reduce(_ + _)
println(count1)
// 方式2。错误的方式
var acc = 0
data.flatMap(line => line.split("\\s+")).foreach(word => acc+= 1)
println(acc)
// 在Driver中定义变量,每个运行的Task会得到这些变量的一份新的副本,但在Task中更新这些副本的值不会影响Driver中对应变量的值

在这里插入图片描述
Spark内置了三种类型的累加器,分别是

  • LongAccumulator 用来累加整数型
  • DoubleAccumulator 用来累加浮点型
  • CollectionAccumulator 用来累加集合元素
    在这里插入图片描述

4.9 TopN的优化

package cn.lagou.sparkcore

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.immutable



object TopN {
  def main(args: Array[String]): Unit = {
    // 创建SparkContext
    val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")
    val N = 9

    // 生成数据
    val random = scala.util.Random
    val scores: immutable.IndexedSeq[String] = (1 to 50).flatMap { idx =>
      (1 to 2000).map { id =>
        f"group$idx%2d,${random.nextInt(100000)}"
      }
    }

    val scoresRDD: RDD[(String, Int)] = sc.makeRDD(scores).map { line =>
      val fields: Array[String] = line.split(",")
      (fields(0), fields(1).toInt)
    }
    scoresRDD.cache()

    // TopN的实现
    // groupByKey的实现,需要将每个分区的每个group的全部数据做shuffle
    scoresRDD.groupByKey()
      .mapValues(buf => buf.toList.sorted.takeRight(N).reverse)
      .sortByKey()
      .collect.foreach(println)

    println("******************************************")

    // TopN的优化
    //aggregateByKey可以定义初值,List[Int]() 就是初值
    scoresRDD.aggregateByKey(List[Int]())(
      (lst, score) => (lst :+ score).sorted.takeRight(N),  //将score加到lst里面,然后排序
      (lst1, lst2) => (lst1 ++ lst2).sorted.takeRight(N)   //将lst合并,然后排序
    ).mapValues(buf => buf.reverse)
      .sortByKey()
      .collect.foreach(println)

    // 关闭SparkContext
    sc.stop()
  }
}

在这里插入图片描述

第5节 Spark原理初探

5.1 Standalone模式作业提交

Standalone 模式下有四个重要组成部分,分别是:

  • Driver:用户编写的 Spark 应用程序就运行在 Driver 上,由Driver 进程执行
  • Master:主要负责资源的调度和分配,并进行集群的监控等职责
  • Worker:Worker 运行在集群中的一台服务器上。负责管理该节点上的资源,负责启动启动节点上的 Executor
  • Executor:一个 Worker 上可以运行多个 Executor,Executor通过启动多个线程(task)对 RDD 的分区进行并行计算

SparkContext 中的三大组件:
DAGScheduler:负责将DAG划分成若干个Stage
TaskScheduler:将DAGScheduler提交的 Stage(Taskset)进行优先级排序,再将task 发送到 Executor
SchedulerBackend:定义了许多与Executor事件相关的处理,包括:新的executor注册进来的时候记录executor的信息,增加全局的资源量(核数);executor更新状态,若任务完成的话,回收core;其他停止executor、remove executor等事件

在这里插入图片描述
Standalone模式下作业提交步骤:
在这里插入图片描述

1、启动应用程序,完成SparkContext的初始化
2、Driver向Master注册,申请资源
3、Master检查集群资源状况。若集群资源满足,通知Worker启动Executor
4、Executor启动后向Driver注册(称为反向注册)
5、Driver完成DAG的解析,得到Tasks,然后向Executor发送Task
6、Executor 向Driver汇总任务的执行情况
7、应用程序执行完毕,回收资源

5.2 RDD编程优化

1、RDD复用

避免创建重复的RDD。在开发过程中要注意:对于同一份数据,只应该创建一个
RDD,不要创建多个RDD来代表同一份数据。

2、RDD缓存/持久化

  • 当多次对同一个RDD执行算子操作时,每一次都会对这个RDD以之前的父RDD
    重新计算一次,这种情况是必须要避免的,对同一个RDD的重复计算是对资源的
    极大浪费
  • 对多次使用的RDD进行持久化,通过持久化将公共RDD的数据缓存到内存/磁盘
    中,之后对于公共RDD的计算都会从内存/磁盘中直接获取RDD数据
  • RDD的持久化是可以进行序列化的,当内存无法将RDD的数据完整的进行存放的
    时候,可以考虑使用序列化的方式减小数据体积,将数据完整存储在内存中

3、巧用 filter

  • 尽可能早的执行filter操作,过滤无用数据
  • 在filter过滤掉较多数据后,使用 coalesce 对数据进行重分区

4、使用高性能算子

1、避免使用groupByKey,根据场景选择使用高性能的聚合算子 reduceByKey、aggregateByKey
2、coalesce、repartition,在可能的情况下优先选择没有shuffle的操作(coalesce 没有shuffle,只能将分区变少)
3、foreachPartition 优化输出操作
4、map、mapPartitions,选择合理的选择算子
mapPartitions性能更好,但数据量大时容易导致OOM
5、用 repartitionAndSortWithinPartitions 替代 repartition + sort 操作(减少一次shuffle)
6、合理使用 cache、persist、checkpoint,选择合理的数据存储级别
7、filter的使用
8、减少对数据源的扫描(算法复杂了)

5、设置合理的并行度

  • Spark作业中的并行度指各个stage的task的数量
  • 设置合理的并行度,让并行度与资源相匹配。简单来说就是在资源允许的前提下,并行度要设置的尽可能大,达到可以充分利用集群资源。合理的设置并行度,可以提升整个Spark作业的性能和运行速度

6、广播大变量

  • 默认情况下,task中的算子中如果使用了外部变量,每个task都会获取一份变量的复本,这会造多余的网络传输和内存消耗
  • 使用广播变量,只会在每个Executor保存一个副本,Executor的所有task共用此广播变量,这样就节约了网络及内存资源

5.3 Shuffle原理

Shuffle的本意是洗牌,目的是为了把牌弄乱。

Spark、Hadoop中的shuffle可不是为了把数据弄乱,而是为了将随机排列的数据转换成具有一定规则的数据。

Shuffle是MapReduce计算框架中的一个特殊的阶段,介于Map 和 Reduce 之间。
当Map的输出结果要被Reduce使用时,输出结果需要按key排列,并且分发到Reducer上去,这个过程就是shuffle。

shuffle涉及到了本地磁盘(非hdfs)的读写和网络的传输,大多数Spark作业的性能主要就是消耗在了shuffle环节。因此shuffle性能的高低直接影响到了整个程序的运行效率

在Spark Shuffle的实现上,经历了Hash、Sort、Tungsten-Sort(堆外内存)三阶段:

  • Spark 0.8及以前 Hash Based Shuffle
  • Spark 0.8.1 为Hash Based Shuffle引入File Consolidation机制
  • Spark 0.9 引入ExternalAppendOnlyMap
  • Spark 1.1 引入Sort Based Shuffle,但默认仍为Hash Based Shuffle
  • Spark 1.2 默认的Shuffle方式改为Sort Based Shuffle
  • Spark 1.4 引入Tungsten-Sort Based Shuffle
  • Spark 1.6 Tungsten-sort并入Sort Based Shuffle
  • Spark 2.0 Hash Based Shuffle退出历史舞台

简单的说:

  • Spark 1.1 以前是Hash Shuffle
  • Spark 1.1 引入了Sort Shuffle
  • Spark 1.6 将Tungsten-sort并入Sort Shuffle
  • Spark 2.0 Hash Shuffle退出历史舞台
    在这里插入图片描述

1、Hash Base Shuffle V1

  • 每个Shuffle Map Task需要为每个下游的Task创建一个单独的文件
  • Shuffle过程中会生成海量的小文件。同时打开过多文件、低效的随机IO
    在这里插入图片描述

2、Hash Base Shuffle V2

Hash Base Shuffle V2 核心思想:允许不同的task复用同一批磁盘文件,有效将多个
task的磁盘文件进行一定程度上的合并,从而大幅度减少磁盘文件的数量,进而提升
shuffle write的性能。一定程度上解决了Hash V1中的问题,但不彻底。
在这里插入图片描述
总:Hash Shuffle 规避了排序,提高了性能;总的来说在Hash Shuffle过程中生成海量的小文件(Hash Base Shuffle V2生成海量小文件的问题得到了一定程度的缓解)。

3、Sort Base Shuffle

Sort Base Shuffle大大减少了shuffle过程中产生的文件数,提高Shuffle的效率;
在这里插入图片描述
Spark Shuffle 与 Hadoop Shuffle 从目的、意义、功能上看是类似的,实现(细节)上有区别。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值