【重整化群1(补)】

4. KT 相图,O(3) 相图

  • O(3) - 非线性Sigma model

    1. O(3)自由场 - 归一化序参量:
      F = 1 2 ρ ∫ d d x ( ∇ m ⃗ ) 2 Z = ∫ D [ m ⃗ ]   δ ( m 2 − 1 ) \begin{aligned} & F = \frac{1}{2\rho} \int d^d x (\nabla \vec m)^2 \\ & Z = \int D[\vec m] ~ \delta( m^2 - 1 ) \end{aligned} F=2ρ1ddx(m )2Z=D[m ] δ(m21)
      因此,对 m -3 分量矢量函数具有归一化约束,这令整个自由场理论呈现出非线性
      归约成2个变量,采用柱坐标,限定 r = 1:耦合参数 g,设定时空最小截断尺度a
      ∇ m x , y = ∇ ( 1 − m z 2 c o s ( θ ) ) , ∇ ( 1 − m z 2 s i n ( θ ) )    →    ( ∇ m ) 2 = ( ∇ m z ) 2 + ( 1 − m z 2 ) ( ∇ θ ) 2 + ( m z ∇ m z ) 2 1 − m z 2 →      m z = ( g a d − 2 ) 1 2 ϕ   ; g = ρ a 2 − d < < 1 →      F = ∫ d d x ( 1 2 ( ∇ ϕ ) 2 + 1 − g a d − 2 ϕ 2 2 g a d − 2 ( ∇ θ ) 2 + g a d − 2 2 ( 1 − g a d − 2 ϕ 2 ) ( ϕ ∇ ϕ ) 2 )    = ∫ d d x ( 1 2 ( ∇ ϕ ) 2 + 1 2 g d − 2 ( ∇ θ ) 2 − 1 2 ( ϕ ∇ θ ) 2 ) \begin{aligned} & \nabla m_{x,y} = \nabla (\sqrt {1-m^2_z} cos(\theta)), \nabla (\sqrt {1-m^2_z} sin(\theta)) \\ ~~\rightarrow ~~ & (\nabla m)^2 = (\nabla m_z)^2 + (1-m^2_z)(\nabla \theta)^2 + \frac{(m_z \nabla m_z)^2}{1-m^2_z} \\ \rightarrow ~~ & ~ m_z = (g a^{d-2})^{\frac{1}{2}} \phi ~ ; g = \rho a^{2-d} << 1 \\ \rightarrow ~~ & ~ F = \int d^dx (\frac{1}{2}(\nabla\phi)^2 + \frac{1-ga^{d-2}\phi^2}{2ga^{d-2}} (\nabla\theta)^2 + \frac{ga^{d-2}}{2(1-ga^{d-2}\phi^2)} (\phi \nabla \phi)^2 )\\ & ~~= \int d^dx (\frac{1}{2}(\nabla\phi)^2 + \frac{1}{2g^{d-2}} (\nabla \theta)^2 -\frac{1}{2}(\phi\nabla\theta)^2) \end{aligned}         mx,y=(1mz2 cos(θ)),(1mz2 sin(θ))(m)2=(mz)2+(1mz2)(θ)2+1mz2(mzmz)2 mz=(gad2)21ϕ ;g=ρa2d<<1 F=ddx(21(ϕ)2+2gad21gad2ϕ2(θ)2+2(1gad2ϕ2)gad2(ϕϕ)2)  =ddx(21(ϕ)2+2gd21(θ)221(ϕθ)2)
      定义配分函数,并进行近似( \epsilon = 2+d )
      Z = ∫ D [ ϕ ] D [ θ ] e − F = ∫ D [ θ ] e − ∫ d d x 1 2 g a d − 2 ( ∇ θ ) 2 ∫ D [ ϕ ] e − ∫ d d x ( 1 2 ( ∇ ϕ ) 2 − 1 2 ϕ 2 ( ∇ θ ) 2 ) = ∫ D [ θ ] e − ∫ d d x 1 2 g a d − 2 ( ∇ θ ) 2 e 1 2 ∑ k ( ln ⁡ ( 2 π k 2 − ln ⁡ ( 1 − ( ∇ θ ) ∣ k = 0 k 2 ) ) ) \begin{aligned} Z = & \int D[\phi]D[\theta]e^{-F} \\ = & \int D[\theta]e^{-\int d^dx \frac{1}{2ga^{d-2}} (\nabla \theta)^2} \int D[\phi] e^{-\int d^dx (\frac{1}{2}(\nabla \phi)^2 - \frac{1}{2}\phi^2 (\nabla \theta)^2)}\\ = & \int D[\theta]e^{-\int d^dx \frac{1}{2ga^{d-2}} (\nabla \theta)^2} e^{\frac{1}{2}\sum_k(\ln(\frac{2\pi}{k^2} - \ln(1-\frac{(\nabla \theta)|_{k=0}}{k^2})) )} \end{aligned} Z===D[ϕ]D[θ]eFD[θ]eddx2gad21(θ)2D[ϕ]eddx(21(ϕ)221ϕ2(θ)2)D[θ]eddx2gad21(θ)2e21k(ln(k22πln(1k2(θ)k=0)))
      仍然用连续极限,代入Z-指数项,删掉自由项积分,近似 ∇θ = const
      ∑ k ( . . . ) = 1 ( 2 π ) 2 ∫ d d k ( . . . )   ;    1 2 ln ⁡ ( 1 − ( ∇ θ ) 2 ∣ k = 0 k 2 ) ≈ − 1 2 ( ∇ θ ) 2 ∣ k = 0 k 2 → 1 ( 2 π ) d ∫ d d k ( − 1 2 ( ∇ θ ) 2 ∣ k = 0 k 2 ) = − 1 ( 2 π ) d ( ∇ θ ) 2 ∣ k = 0 2 k 2 ∫ Λ / b Λ d d k k 2 = − 1 ( 2 π ) d ( ∇ θ ) 2 ∣ k = 0 2 k 2 S d Λ d − 2 ( d − 2 ) ( 1 − b d − 2 ) = − 1 ( 2 π ) d 1 2 k 2 S d Λ d − 2 ( d − 2 ) ( 1 − b d − 2 ) ∫ d d x ( ∇ θ ) 2 \begin{aligned} & \sum_k (...) = \frac{1}{(2\pi)^2}\int d^dk(...) ~;~~ \frac{1}{2} \ln(1-\frac{(\nabla\theta)^2|_{k=0}}{k^2})\approx -\frac{1}{2}\frac{(\nabla\theta)^2|_{k=0}}{k^2} \\ & \rightarrow \frac{1}{(2\pi)^d} \int d^dk (-\frac{1}{2}\frac{(\nabla\theta)^2|_{k=0}}{k^2})\\ & = - \frac{1}{(2\pi)^d} \frac{(\nabla\theta)^2|_{k=0}}{2k^2} \int_{\Lambda/b}^{\Lambda} \frac{d^dk}{k^2} \\ & = - \frac{1}{(2\pi)^d} \frac{(\nabla\theta)^2|_{k=0}}{2k^2} \frac{S_d\Lambda^{d-2}}{(d-2)}(1-b^{d-2}) \\ & = - \frac{1}{(2\pi)^d} \frac{1}{2k^2} \frac{S_d\Lambda^{d-2}}{(d-2)}(1-b^{d-2}) \int d^dx (\nabla\theta)^2 \end{aligned} k(...)=(2π)21ddk(...) ;  21ln(1k2(θ)2k=0)21k2(θ)2k=0(2π)d1ddk(21k2(θ)2k=0)=(2π)d12k2(θ)2k=0Λ/bΛk2ddk=(2π)d12k2(θ)2k=0(d2)SdΛd2(1bd2)=(2π)d12k21(d2)SdΛd2(1bd2)ddx(θ)2
      归纳为 θ 变量的连续极限场论,ϕ 自由度被率先积掉 (Intergrate out)
      Z = ∫ D [ θ ] e − ∫ d d x 1 2 g a d − 2 ( ∇ θ ) 2 + ( − 1 2 ) ( S d Λ d − 2 ( 2 π ) d ( 1 − b 2 − d ) ∫ d d x ( ∇ θ ) 2 Z = \int D[θ] e^ {-\int d^dx \frac{1}{2ga^{d-2}}(\nabla\theta)^2 + (-\frac{1}{2})(\frac{S_d \Lambda^{d-2}}{(2\pi)^d}(1-b^{2-d})\int d^dx(\nabla\theta)^2 } Z=D[θ]eddx2gad21(θ)2+(21)((2π)dSdΛd2(1b2d)ddx(θ)2
      因此,归纳为对 θ 变量积分,并进行修正
      Z = ∫ D [ θ ] e − ∫ d d x 1 2 g ′ a ′ d − 2 ( ∇ θ ) 2 1 g ′ a ′ d − 2 = 1 g a d − 2 − S d Λ d − 2 ( 2 π ) d ( d − 2 ) ( 1 − b 2 − d ) \begin{aligned} & Z = \int D[\theta] e^{-\int d^dx \frac{1}{2g'a'^{d-2}}(\nabla\theta)^2} \\ & \frac{1}{g'a'^{d-2}} = \frac{1}{ga^{d-2}} - \frac{S_d\Lambda^{d-2}}{(2\pi)^d(d-2)}(1-b^{2-d}) \\ \end{aligned} Z=D[θ]eddx2gad21(θ)2gad21=gad21(2π)d(d2)SdΛd2(1b2d)
    1. 耦合参数 - RG Equation
      β ( g ) = ( 2 − d ) g + S d ( 2 π ) d g 2 g ∗ = 0   → β ( g ) ∣ g ∗ = 0 ≈ ( 2 − d ) g g ∗ = ( 2 π ) d S d ( 2 − d )   → β ( g ) ∣ g ∗ = g 0 ≈ ( d − 2 ) ( g − g 0 ) \begin{aligned} & \beta(g) = (2-d)g + \frac{S_d}{(2\pi)^d}g^2 \\ & g^* = 0 ~ \rightarrow \beta(g)|_{g*=0} \approx (2-d)g \\ & g^* = \frac{(2\pi)^d}{S_d}(2-d) ~ \rightarrow \beta(g)|_{g* = g_0} \approx (d-2)(g-g_0) \end{aligned} β(g)=(2d)g+(2π)dSdg2g=0 β(g)g=0(2d)gg=Sd(2π)d(2d) β(g)g=g0(d2)(gg0)
      d > 2:g = 0 稳定不动点(有序态,∇θ<<1),g = g0 不稳定不动点 (相变,\nu = 1/2-d)
      d < 2:g = 0 不稳定不动点(相变,\nu = 1/d-2),g = g0 稳定不动点(非物理,< 0 )
    1. 渐近自由 ~ d = 2
      d g d ln ⁡ b = g 2 2 π > 0 → ∫ g 0 g d g g 2 = 1 2 π ∫ 0 ln ⁡ b d ln ⁡ b → 1 g 0 − 1 g = 1 2 π ln ⁡ ( b ) \begin{aligned} & \frac{dg}{d \ln b} = \frac{g^2}{2\pi}>0 \\ \rightarrow & \int ^ g_{g_0} \frac{dg}{g^2} = \frac{1}{2\pi} \int^{\ln b}_0 d\ln b \\ \rightarrow& \frac{1}{g_0} - \frac{1}{g} = \frac{1}{2\pi} \ln(b) \\ \end{aligned} dlnbdg=2πg2>0g0gg2dg=2π10lnbdlnbg01g1=2π1ln(b)
      这意味着随着b增大,g流向强耦合:夸克禁闭同 Kondo 问题
      `
  • XY model - KT 相变

    1. XY model - Fxy 的连续极限
      定义 S 在平面内旋转,因此有分量 Sx = Scos(θ) ,Sy = Ssin(θ)
      H X Y = ∑ < j , k > J j , k S ⃗ j ‘ S ⃗ k S ⃗ j ‘ S ⃗ k = S ( c o s ( θ j ) , s i n ( θ j ) )   ‘ S ( c o s ( θ k ) , s i n ( θ k ) )       = S 2 ( c o s ( θ i − θ j ) ) \begin{aligned} & H_{XY} = \sum_{<j,k>}J_{j,k} \vec S_{j}`\vec S_{k} \\ & \vec S_j ` \vec S_k = S(cos(\theta_j),sin(\theta_j)) ~`S(cos(\theta_k),sin(\theta_k)) \\ &~~~~~ = S^2 (cos(\theta_i - \theta_j)) \end{aligned} HXY=<j,k>Jj,kS jS kS jS k=S(cos(θj),sin(θj)) S(cos(θk),sin(θk))     =S2(cos(θiθj))
      考虑最近邻作用,并丢掉常数项,取连续极限,鞍点展开,有
      H X Y = ∑ < j , k > ( − J )   c o s ( θ j − θ k ) = ∑ j ∑ δ = x ^ , y ^ ( − J )   c o s ( θ j − θ j + δ ) = ∑ j ( − J ) ( c o s ( θ j − θ j + x ^ ) + c o s ( θ j − θ j + j ^ ) ) = ∑ j ( − J ) ∑ δ = x ^ , y ^ ( 1 − 1 2 ( θ j − θ j + δ ) 2 ) = ∑ j ( − J ) ( 2 − 1 2 ( θ j − θ j + x ^ ) 2 − 1 2 ( θ j − θ j + y ^ ) 2 ) \begin{aligned} & H_{XY} = \sum_{<j,k>}(-J) ~ cos(\theta_j -\theta_k) \\ & = \sum_j \sum_{\delta = \hat x , \hat y }(-J)~cos(\theta_j - \theta_{j+\delta}) \\ & = \sum_j (-J) (cos(\theta_j - \theta_{j+\hat x}) + cos(\theta_j - \theta_{j+\hat j})) \\ & = \sum_j (-J)\sum_{\delta = \hat x,\hat y} (1 -\frac{1}{2}(\theta_j -\theta_{j+\delta})^2) \\ & = \sum_j (-J) (2-\frac{1}{2}(\theta_j -\theta_{j+\hat x})^2 -\frac{1}{2}(\theta_j -\theta_{j+\hat y})^2 ) \end{aligned} HXY=<j,k>(J) cos(θjθk)=jδ=x^,y^(J) cos(θjθj+δ)=j(J)(cos(θjθj+x^)+cos(θjθj+j^))=j(J)δ=x^,y^(121(θjθj+δ)2)=j(J)(221(θjθj+x^)221(θjθj+y^)2)
      以下是取连续极限的符号规则,最终以Lattice为对象写出配分函数
      1 a 2 ∑ j ∑ k   → 1 a 2 ∫ d 2 r ( θ j − θ j + x ^ ) 2 → a 2 ( ∂ x θ ) 2 F X Y = − K 2 ∫ d 2 r ( ( ∂ x θ ) 2 + ( ∂ y θ ) 2 ) θ ( r ⃗ ) = ∫ d 2 k ( 2 π ) 2 e i k r θ k Z X Y = ∏ r ∫ d θ r e − F X Y = ∏ k > 0 ∫ d θ k ∗ d θ k e − K k 2 ∣ θ k ∣ 2 \begin{aligned} & \frac{1}{a^2} \sum_j \sum_k ~ \rightarrow \frac{1}{a^2} \int d^2r \\ & (\theta_j - \theta_{j+\hat x})^2 \rightarrow a^2(\partial_x\theta)^2 \\ & F_{XY} = -\frac{K}{2} \int d^2r ((\partial_x \theta)^2+(\partial_y \theta)^2) \\ & \theta(\vec r) = \int \frac{d^2k}{(2\pi)^2} e^{ikr} \theta_k \\ & Z_{XY} = \prod_r \int d\theta_r e^{-F_{XY}} = \prod_{k>0} \int d\theta^*_k d\theta_k e^{-K k^2|\theta_k|^2} \end{aligned} a21jk a21d2r(θjθj+x^)2a2(xθ)2FXY=2Kd2r((xθ)2+(yθ)2)θ(r )=(2π)2d2keikrθkZXY=rdθreFXY=k>0dθkdθkeKk2θk2
      在高温与低温展开下,关联函数有呈现从指数律衰减到幂律衰减的相变过程
      T / J > > 1 : e − ∣ r i − r j ∣ ln ⁡ ( T J ) T / J < < 1 : 1 ∣ r i − r j ∣ T 2 π J \begin{aligned} & T/J>>1: e^{-|r_i-r_j| \ln(\frac{T}{J})} \\ & T/J<<1: \frac{1}{|r_i - r_j|^{\frac{T}{2\pi J}}}\\ \end{aligned} T/J>>1:erirjln(JT)T/J<<1:rirj2πJT1
      这种相变被称为,K-T 相变,是涡旋导致的相变,它令低温长程关联失效。
    1. Vortex to S-G model
      我们定义涡旋场由若干涡荷为权重的单位涡度的叠加如:
      θ ( r ) = ∑ j θ j = ∑ j q j arctan ⁡ ( y − y j x − x j ) \theta(r) = \sum_j \theta_j = \sum_j q_j \arctan(\frac{y-y_j}{x-x_j}) θ(r)=jθj=jqjarctan(xxjyyj)
      显然,该叠加符合 Laplace - Equation,以及作为涡旋的物理量:
      I = ∮ d l ⃗   ∇ ( θ ( r ⃗ ) ) = 2 π E v = ∫ d 2 r   J 2 ( ∇ ( θ ( r ⃗ ) ) ) 2 = J π ln ⁡ L R S v = k ln ⁡ ( Ω ) = 2 k ln ⁡ ( L R ) F V = E V − T S V = ( J π − 2 k ) ln ⁡ ( L R ) \begin{aligned} & I = \oint d \vec l~ \nabla(\theta(\vec r)) = 2\pi \\ & E_v = \int d^2 r ~ \frac{J}{2} (\nabla(\theta(\vec r)))^2 = J \pi \ln{\frac{L}{R}} \\ & S_v = k \ln(\Omega) = 2k\ln(\frac{L}{R}) \\ & F_V = E_V - TS_V = (J \pi-2k) \ln(\frac{L}{R}) \end{aligned} I=dl  (θ(r ))=2πEv=d2r 2J((θ(r )))2=JπlnRLSv=kln(Ω)=2kln(RL)FV=EVTSV=(Jπ2k)ln(RL)
      可以计算出,T ~ T_KT 存在一个相变温度,当 T>T_KT,F<0,会倾向于形成单涡旋
      这将在下面导出与 Lattice-Spin 对偶的 Vortex-Charge 模型:S-G model,用于解释涡旋致高温态
    1. S-G. Scaling
      对XY-model进行 Villian 近似与 Hubbard Stractonovich 变换,作为描述 XY model 的流方程
      S-G 模型 取连续极限 可以写成:
      Z S G = ∫ D [ ϕ ( x ⃗ ) ] e − F S G F S G = ∫ d x ⃗   ( 1 2 K ( ∇ ϕ ( x ⃗ ) ) 2 − 2 y a − 2 cos ⁡ ( 2 π ϕ ( x ⃗ ) ) ) \begin{aligned} & Z_{SG} = \int D[\phi(\vec x)] e^{-F_{SG}} \\ & F_{SG} = \int d\vec x ~(\frac{1}{2K}(\nabla \phi(\vec x))^2 - 2ya^{-2} \cos(2\pi \phi(\vec x))) \end{aligned} ZSG=D[ϕ(x )]eFSGFSG=dx  (2K1(ϕ(x ))22ya2cos(2πϕ(x )))
      在鞍点展开,并在动量空间上观察到能隙:
      = ∫ d x ⃗   ( 1 2 K ( ∇ δ ϕ ( x ⃗ ) ) 2 + 2 y a − 2 ( 2 π ) 2 1 2 ( δ ϕ ( x ⃗ ) ) 2 ) = ∫ d k ⃗   ( 1 2 K k 2 + 4 π a − 2 y )   ∣ δ ϕ k ∣ 2 \begin{aligned} & = \int d \vec x ~(\frac{1}{2K}(\nabla \delta \phi(\vec x))^2 + 2ya^{-2} (2\pi)^2 \frac{1}{2}(\delta \phi(\vec x))^2) \\ & = \int d \vec k ~(\frac{1}{2K}k^2 + 4\pi a^{-2}y) ~|\delta \phi_k|^2 \end{aligned} =dx  (2K1(δϕ(x ))2+2ya2(2π)221(δϕ(x ))2)=dk  (2K1k2+4πa2y) δϕk2
      划分完高低能,对模型重标,积掉ϕ(x) >:
      cos(ϕ(x)< + ϕ(x) >),出现高低能混杂的情形,这里需要含K的积分对y参数进行修正
      F S G = ∫ d x ⃗ ( 1 2 K ( ∇ ϕ < ) 2 + 1 2 K ( ∇ ϕ > ) 2 − 2 y ( cos ⁡ ( 2 π ϕ < ) cos ⁡ ( 2 π ϕ > ) − sin ⁡ ( 2 π ϕ < ) sin ⁡ ( 2 π ϕ > ) ) ) Z = ∫ D [ ϕ < ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ < ) 2 ∫ D [ ϕ > ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ > ) 2 e ∫ d x ⃗   2 y cos ⁡ ( 2 π ϕ < ) cos ⁡ ( 2 π ϕ > ) − sin ⁡ ( 2 π ϕ < ) sin ⁡ ( 2 π ϕ > ) \begin{aligned} & F_{SG} = \int d\vec x (\frac{1}{2K}(\nabla \phi_<)^2+\frac{1}{2K}(\nabla \phi_>)^2 -2y (\cos(2\pi\phi_<)\cos (2\pi\phi_>) -\sin(2\pi\phi_<) \sin(2\pi\phi_>))) \\ & Z = \int D[\phi_<] e^{-\int d \vec x \frac{1}{2K} (\nabla \phi_<)^2 } \int D[\phi_>]e^{-\int d \vec x \frac{1}{2K} (\nabla \phi_>)^2}e^{\int d\vec x~ 2y \cos(2\pi\phi_<)\cos (2\pi\phi_>) -\sin(2\pi\phi_<) \sin(2\pi\phi_>) } \end{aligned} FSG=dx (2K1(ϕ<)2+2K1(ϕ>)22y(cos(2πϕ<)cos(2πϕ>)sin(2πϕ<)sin(2πϕ>)))Z=D[ϕ<]edx 2K1(ϕ<)2D[ϕ>]edx 2K1(ϕ>)2edx  2ycos(2πϕ<)cos(2πϕ>)sin(2πϕ<)sin(2πϕ>)
      经典操作了,展开一阶项,用期望值取出混杂的高能部分以表示积掉【Intergrate out】,
      好处就是,能够留出高能标自由场的积分独立表示,直接扯回到低能积分式的表达里
      Z ≈ ∫ D [ ϕ < ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ < ) 2 ∫ D [ ϕ > ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ > ) 2 ( 1 + 2 y ∫ d x ⃗ cos ⁡ ( 2 π ϕ < ) ⟨ cos ⁡ ( 2 π ϕ > ) ⟩ 0 − sin ⁡ ( 2 π ϕ < ) ⟨ sin ⁡ ( 2 π ϕ > ) ⟩ 0 ) = ∫ D [ ϕ < ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ < ) 2 ∫ D [ ϕ > ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ > ) 2 ( 1 + 2 y ∫ d x ⃗ cos ⁡ ( 2 π ϕ < ) ⟨ cos ⁡ ( 2 π ϕ > ) ⟩ 0 ) = ∫ D [ ϕ < ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ < ) 2 ∫ D [ ϕ > ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ > ) 2 ( 1 + 2 y ∫ d x ⃗ cos ⁡ ( 2 π ϕ < ) ⟨ 1 2 ( e i 2 π ϕ > ) + ( e − i 2 π ϕ > ) ⟩ 0 ) \begin{aligned} & Z \approx \int D[\phi_<] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_<)^2} \int D [\phi_>] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_>)^2}(1 + 2y \int d \vec x \cos(2\pi\phi_<) \left \langle \cos (2\pi\phi_>)\right \rangle_0 - \sin(2\pi\phi_<) \left \langle \sin(2\pi\phi_>) \right\rangle_0 ) \\ & = \int D[\phi_<] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_<)^2} \int D [\phi_>] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_>)^2} (1+2y \int d \vec x \cos(2\pi\phi_<) \left \langle \cos (2\pi\phi_>)\right \rangle_0 ) \\ & = \int D[\phi_<] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_<)^2} \int D [\phi_>] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_>)^2} (1+ 2y \int d \vec x \cos(2\pi\phi_<) \left \langle \frac{1}{2} (e^{i2\pi\phi_>}) +(e^{-i2\pi\phi_>}) \right \rangle_0 ) \end{aligned} ZD[ϕ<]edx 2K1(ϕ<)2D[ϕ>]edx 2K1(ϕ>)2(1+2ydx cos(2πϕ<)cos(2πϕ>)0sin(2πϕ<)sin(2πϕ>)0)=D[ϕ<]edx 2K1(ϕ<)2D[ϕ>]edx 2K1(ϕ>)2(1+2ydx cos(2πϕ<)cos(2πϕ>)0)=D[ϕ<]edx 2K1(ϕ<)2D[ϕ>]edx 2K1(ϕ>)2(1+2ydx cos(2πϕ<)21(ei2πϕ>)+(ei2πϕ>)0)
      注:动量关联到位型关联
      ⟨ ϕ ( k ) ϕ ( − k ) ⟩ = K k 2 ⟨ ϕ ( x ) ϕ ( x ) ⟩ = ∫ d 2 k ( 2 π ) 2 K k 2 = ∫ Λ / b Λ d k 2 π K k = K 2 π ln ⁡ b \begin{aligned} & \left \langle \phi(k)\phi(-k) \right \rangle = \frac{K}{k^2} \\ & \left \langle \phi(x)\phi(x) \right \rangle = \int \frac{d^2k}{(2\pi)^2} \frac{K}{k^2} = \int^{\Lambda}_{\Lambda/b} \frac{dk}{2\pi}\frac{K}{k} = \frac{K}{2\pi}\ln b \end{aligned} ϕ(k)ϕ(k)=k2Kϕ(x)ϕ(x)=(2π)2d2kk2K=Λ/bΛ2πdkkK=2πKlnb
      作为 exp 展开项当中的第一项 k-space 积分修正,映射回指数,并对照地修正y参数
      ⟨ e − i 2 π ϕ > ⟩ 0 + ⟨ e i 2 π ϕ > ⟩ 0 = e − 1 2 ( 2 π ) 2 ⟨ ϕ > 2 ⟩ = e − 1 2 ( 2 π ) 2 ( K 2 π ln ⁡ b ) = b − π K Z = ∫ D [ ϕ < ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ < ) 2 e ∫ d x ⃗   2 y b − π K cos ⁡ ( 2 π ϕ < ) ∫ D [ ϕ > ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ > ) 2 Z = ∫ D [ ϕ < ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ < ) 2 −   2 y b − π K cos ⁡ ( 2 π ϕ < ) ∫ D [ ϕ > ] e − ∫ d x ⃗ 1 2 K ( ∇ ϕ > ) 2 \begin{aligned} & \left \langle e^{-i2\pi\phi_>} \right \rangle_0 + \left \langle e^{i2\pi\phi_>} \right \rangle_0 = e^{-\frac{1}{2}(2\pi)^2 \left \langle \phi^2_> \right\rangle } = e^{-\frac{1}{2}(2\pi)^2 (\frac{K}{2\pi} \ln b)} = b^{ - \pi K} \\ & Z = \int D[\phi_<] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_<)^2} e^{\int d \vec x ~2yb^{-\pi K} \cos(2\pi \phi_<) } \int D [\phi_>] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_>)^2} \\ & Z = \int D[\phi_<] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_<)^2 -{ ~2yb^{-\pi K} \cos(2\pi \phi_<) } } \int D [\phi_>] e^{ - \int d \vec x\frac{1}{2K} (\nabla \phi_>)^2} \end{aligned} ei2πϕ>0+ei2πϕ>0=e21(2π)2ϕ>2=e21(2π)2(2πKlnb)=bπKZ=D[ϕ<]edx 2K1(ϕ<)2edx  2ybπKcos(2πϕ<)D[ϕ>]edx 2K1(ϕ>)2Z=D[ϕ<]edx 2K1(ϕ<)2 2ybπKcos(2πϕ<)D[ϕ>]edx 2K1(ϕ>)2 作为对y参数的高能修正:与原位型空间的 F_SG 进行对照
      F S G = ∫ d x ⃗   ( 1 2 K ( ∇ ϕ ( x ⃗ ) ) 2 − 2 y cos ⁡ ( 2 π ϕ ( x ⃗ ) ) ) F G L ′ = ∫ d x ⃗   ( 1 2 K ( ∇ ϕ ( x ⃗ ) < ) 2 −   2 y b − π K cos ⁡ ( 2 π ϕ ( x ⃗ ) < ) \begin{aligned} & F_{SG} = \int d\vec x ~(\frac{1}{2K}(\nabla \phi(\vec x))^2 - 2y \cos(2\pi \phi(\vec x))) \\ & F'_{GL} = \int d\vec x ~(\frac{1}{2K}(\nabla \phi(\vec x)_<)^2 -{ ~2yb^{-\pi K} \cos(2\pi \phi(\vec x)_<) } \\ \end{aligned} FSG=dx  (2K1(ϕ(x ))22ycos(2πϕ(x )))FGL=dx  (2K1(ϕ(x )<)2 2ybπKcos(2πϕ(x )<)
      展开二阶项,可以获得对 K 的修正,暂时不想写那么多,找机会再更新完吧
    1. S-G. Flow
      因此获得 XY-RG Flow Equation
      d K d ln ⁡ b = − y ^ 2 2 K 3 d y ^ d ln ⁡ b = ( 2 − π K ) y ^   y ^ = ( 4 π ) 2 Λ 4 y \begin{aligned} & \frac{d K}{d \ln b} = -\frac{\hat y^2}{2} K^3 \\ & \frac{d \hat y} {d \ln b} = (2-\pi K)\hat y \\ & ~ \hat y = \frac{(4\pi)^2}{\Lambda^4} y \\ \end{aligned} dlnbdK=2y^2K3dlnbdy^=(2πK)y^ y^=Λ4(4π)2y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值