练书法常规的一般都会从楷书练起。但有一种练习方法是从最难的篆书练起,练好篆书,接下来按书法的发展史顺序再练,也就一通百通了。因为古人是先有的篆书,后有的楷书。成人学书法,可以考虑这种方法。
本书介绍图表,直接介绍最难于解读的轮中轮。懂了这个图表,其它的自然也就懂了。因为轮中轮的使用方法最复杂,其它的往往可以一语概之。
轮中轮历史简介
轮中轮的全貌:

这有点像把64卦和太极细节组合在一起的罗盘的样子。实际上不仅像,数理都相通。图表是数理发展的代数方向,而周易是图符兼数理方向,里面有代数有几何。太极是图符和几何方向。
圆在数理中就是一个循环的意思,用什么数学方法拟合周而复始的、观察到的天然现象最好呢?当然是圆。古人也是这么想的。当然,那时候还没有“数学”这个词。中国古代叫算术或数术。术这个词,实际是两性的,包含褒贬。
古代的轮中轮也绝非这么复杂,这是后人利用这个数理模型的兼容性,不断给其附加新内容的最终结果。就如周易、太极,自河图、洛书思想之后一脉产生,之后便是各走各的道的,后人又把这两个融为一体。你可以看到,现在如上图一样的周易太极图。
古人通过观察发现的最早的具有循环特征的是天、年、月现象,这些是有循环特征的,用圆拟合或者说表达比较方便。这是古代天文产生历法的基础。这个时候的思想是正向思维的,目的也很单纯,建立历法,拟合表达天文现象,指导农业生产。从而产生数学拟合方法。
节气、周、小时、时辰、分钟这些都是数学“拆分”方法,目的是为了细致一些的方便表达。使用这些数学拆分方法,都利用的是等步长的理想状态的数学拆分,最简单的一年四季春夏秋冬,每个季节91天。但实际情况往往不是等步长的。在北方,春秋较短、冬季最长。南方赤道附近,甚至没有冬季。节气方法产生在黄河流域,与这区间的节气相适应。从有这种细节拆分概念开始,历法就具有当时来讲较复杂的数学技巧了。这些不是原始观察得来的统计结果,而是数学拟合的方法运用了。
一些主观上不想直接表达,而又要利用的数学方法这个时候开始进入到历法。例如基督教的一周7天,实际要解决的是52这个神秘数字;玛雅的卓金历,想解读7、13这两个神秘数字;中国古代的十二生肖,十二个月,十二时辰;等等,都开始塞进历法里面。因为这在当时,是被认为高级的数学秘密,简直是“神赐予的”。古代东、西方因此都产生了“神秘数字”。
“神秘数字”的产生基于几点历史限制:
1、这个数字有很好的数学公约性或数学联系性。
2、这个数字有利于形成一统的数学模型,或通过这个数字的数学换算,兼容其它循环数理。
3、这个数字想解释清楚,以当时的数学发展状况,的确有点麻烦,干脆不解释,只传承,并且以神秘的方式传承。就像金字塔的化圆为方思想,既然球说不清楚,那么弄个金字塔矗立在那里。这种传承,西方借助了基督教、伊斯兰教、犹太教以及一些神秘组织等,东方借助道教、佛教等。这种方式在历史上也起到了积极传承的作用。战乱、书籍失传等问题,并未导致神秘数字思想的衰亡。
古埃及喜欢三分、四分、六分、八分、64分,古代中国喜欢三分、四分、五分、六分、八分、十二分、十六分、六十分、六十四分。
古代西方这种数理沿袭受古代西方帝国更替、兴衰影响,并随着数学发展,数理越趋暗淡,更显神秘。最终数学发展壮大,为求计算简洁,采用了十进制。循环数理渐渐退出主流数学世界,以隐秘形式传承,至今未衰。
而古代中国则将数理兼容并蓄,虽然重文清理,对数理发展有些抑制,压制了正宗数学的发展。但因儒学之根本起源是周易数理,数理之中,周易独大,渐趋兼容,被兼容的数理也就都流传下来。各种数理基本都有分支流传。直到清朝末年,西学东渐,产生文化冲击。中华人民共和国成立以后,树立了以唯物论为核心的哲学思想,揭露数理介入人文、介入哲学、介入文化的弊端,数理才日渐衰微,但流毒尚在。
西学东渐之前,已经东学西渐,明末“永乐大典”大部分流出中国,也让西方见识了中国古代文化。
古代西方分别产生了太阳历和月历;而古代东方的历法因为同时考虑太阳、月亮的天文现象,有太阳历部分,如节气;有月历的部分,如阴历。
这些都是数理循环方法。简单说,也就是哪个数更方便使用,哪个数更有通用性的意思。
数学从数理中分支出来,最终选择的是十分法。现在电脑使用的是2分法或16分法,当然现在叫进制,纯数学意义。已经不像数理方法,有兼容性。进制只可换算,不可兼容。数理的几分法是可以同时兼容使用,以表达更多的数理内容。数学的进制不允许兼容使用,但可以互相换算。
60是古代文明应用最早的循环,古巴比伦、古代中国均有60循环。这是由于60具有良好的公约性。接下来产生的是24、12、7。24、12依然是因为良好的公约性,但7不是,这个比较特殊,它是为了兼容性,考虑52与一年的兼容。在股市中利用周易的数理数48和52有相近数理结果,52误差小一些。52×7=364,与一年365天误差较小一些。
化圆为方,或者说用正方、三角的方法表达圆的变化这个数学思想据说产生于古埃及,这是基于当时圆的数学性质无法明确表达而产生的一种替代数学方法。这种数理思想影响西方数千年,直到江恩所处的年代,甚至至今。当然,现在是画圆为波了,很多人未考虑这种数理思想的影响。
基本掌握圆的几何特征是在古希腊和罗马时期,这时候产生了对圆360分的方法。至于当时有没有度这个概念不清楚。
360相对于60,同样具有良好的公约性。但如果考虑兼容一年365天这个数理意图,误差还是有的。
无论古代的东方还是西方,当时的智者(当时往往都是兼学不同的领域,当时的知识存量毕竟有限,一人之能力尚可接受。这种情况直到牛顿之后,发生变化)都有一个数理梦想,就是用一个数理模型,可以表达所有的事物,也就是所谓的数理大一统思想。那么这个模型必须在数理上,具有合适的数学拟合性,能够通过一些简单的数学方法,拟合所有的现象。这个梦,跨越五千年,至今在很多智者心中依然未醒。无论爱因斯坦纠结于物理大一统,特斯拉号称物理大一统,还是霍金否定物理大一统,都是受此影响。物理用的数学方法,就是拟合数学方法。
在古代,对自然的认识有限,这导致当时确实发现似乎数理一统存在可能性,但在数学研究过程中,发现了覆盖性、数理死角等现实问题。可是数理当时已然介入人文,骑虎难下了,只好自圆其说。为求人文占优势,这些数学死角被刻意掩盖并淡化,强化了其覆盖性的部分。
而且,这种覆盖性中也往往存在人文强加的,而非数学拟合性的范畴了。数理从此干涉人文。例如,古人认为天上的行星就是金木水火土,东方纳入五行中,西方纳入五元素等数理模型中,结果天王星、海王星一发现,这事就麻烦了。要么数理解读有问题,要么数理模型有问题。
为了凑十二星座的数(这是解读方法,非预测方法),兼容行星“历法”,在行星历中,行星就要凑成12个,这样月亮、太阳也就被挤进去凑数,这是地心说阶段的弥补方法。冥王星被开除大行星资格,让这种凑数很尴尬,只好再想办法了。这就是基于地心说模型的星相学的数理麻烦。现在十二属相算命被打倒,西方的十二星座算命大行其道,这让中国的算命先生很郁闷。这两个有区别吗?都是数理介入人文,都是迷信,把解读性当预测性用。要说区别,就是十二星座是外国来的,外来的和尚好念经。
数学拟合性替代解读性,解读性替代预测性;先数理解读人文,之后数理介入人文;掩盖数理问题的同时,附带连蒙带唬带吓人,这几乎是所有迷信走过的必由之路。几千年过去了,手段依然没有改变。
12是产生最早的数理循环数之一,产生年代应与60相当,约5000年前。用5000年前的方法算现代人的命,居然还有那么多人信,可见迷信影响之大。如果不论是非,迷信的经济市场还是巨大的,数学与科学毕竟太年轻了,数学不到2000岁,科学也就300岁。
这样的数理软肋与死角,当时是意识到的。而且被进行了深入研究。一方面对不懂的人进行掩盖,因为当时懂的人是有数的。另一方面,抓紧研究。从这一方面,西方产生了对质数的研究,对小数的研究,对根号的研究,促进了数学发展。到现在,最大的质数还无明确着落,很让数学家脑袋疼。为什么要把质数研究2000多年,还在研究,现在你懂了吧。它是数理模型的软肋之一。
如果一个数理模型可以解读万物,而万物又皆为数,那么质数如何解读?它没有公约性。如果无法用数理模型的简单方法表达,质数就会逍遥于数理模型之外,这是数理大一统很尴尬的事情。可是这么简单的道理,被掩盖了了至少2000年以上,居然还被掩盖住了。
现代的一些数理研究者,依然试图用复杂的数学方法来弥补这个漏洞,实际又忽视了一个古代数理大一统的关键,那就是数理模型表达的简洁性。一个复杂到让大多数人看不懂的数理模型,有什么意义呢?再想试图干涉人文,已经无法被人所接受了。
当时的自然知识总量有限,而且认识也比较粗糙,似乎就有了这么一种数理大一统的可能性。这种思想影响在西方至少影响到了牛顿、爱因斯坦这样的伟大科学家。当然,当代的霍金也知道。他否认了物理理论大一统的可能性,实际还是在说这件事情。
但数理研究的结果是,每种数理方法都有死角,每种数理模型都有软肋,都有数理漏洞,要么是覆盖性欠缺,要么有死角,要么是解读性代替预测性,要么是拟合数学性代替人文性,而这些必须用人文的方式掩盖。特别是把拟合的数学方法用于解读人文,把解读性幻化成预测性,这个问题就更凸显了。
金字塔模型是简单定量的解读圆的思想,而轮中轮已经可以利用金字塔的方法,动态的解决圆变大变小的定量计算了。
轮中轮出于数理一统的思想考虑,试图兼容360度,365天,12个月,52这个神秘数字(527=364),正方、三角表达圆的方法,在正方轮中还隐含了一个72这个神秘数字,这是为了解决平方循环。(在股市拟合应用的时候,有时候是72*2=144,这与斐氏循环的144个交易日无关,它是指144个自然日。以前,因不懂数学原理,有的书中将其混淆。)。
当时没有小数点,这种利用圆的比对方式,可减小误差。小数点的发明就是被这种数学的无奈给逼出来的。
说清楚数理的意思就是,图表这种东西在古代不仅仅包括了数学,还包括了一堆乱糟糟的东西,而对于股市拟合使用,我们只参考其数学模型原理就行了,不看别的,当没看见。

这是用软件画出来的标准的金字塔模型。能够有这种标准近似意义的,胡夫金字塔的尺寸被经常引用。金字塔大约经历了一千多年的建筑试验,才产生了胡夫金字塔这个理想模型。尽管古埃及没有留下建筑意图的证实,但从古希腊、古罗马的资料看,古埃及的金字塔化圆为方的意图的确存在。
图中的球体,与金字塔的正方不是相切关系,一些言论解读为相切关系的,还未了解这个数学模型的真正数学意图。古人是否解释的球,这无证据。但是由于其数理可以近似解释圆,就可以发展出对球的思考。而且这个球是动态的。
经济泡沫这个词产生于200年前,可以说当时已经理解了这个球。
一路写,一路帮江恩理论澄清。并不是介绍江恩的材料,就都是江恩当年研究的结果。太多的误解,太多的曲解,太多的神话。江恩这旗号比较大,挂羊头卖狗肉的太多。
金字塔的关键在于底座的正方的周长等于这个球体现的圆的周长,这不可能产生相切关系。
圆的周长现代计算方法是直接用π,而古埃及没有π这个概念,产生π是胡夫金字塔之后约千年以后的事情,在古希腊或古罗马时期。而且这个时期才明确提出了化圆为方这个数学理念,古埃及人未见考古资料提出这个理念,但用金字塔告诉我们,他们做到了。
有了这个圆、方周长相等的数学关系,那么圆的变化,可以用正方的变化来体现。圆扩大了,周长按比例扩大了,那么等效用的正方的边长也按数学规律扩大了。这就是画圆为方的数学意义。
至古希腊,才有证实用画圆为三角的方法解决圆的计算方法。
而轮中轮,就是这么一个“平铺法”(这个词不见得恰当,就是表达把所有数学整数结果都罗列出来的这种数学方法)的“计算器”。周易数理也是这种“平铺法”。这在限定范围内,解决了整数的覆盖问题。先限定你不许出这个圈子,然后说,你看,你的数学整数答案肯定在这个圈子里。反向思维的杰作。
把所有的数字按一定数学规律罗列在这里,那么答案肯定是其中之一,要求是小数点不计。这本来是代数表达方式。但之后的用法,却是通过一些几何手段,不用计算,找到这个数学结果。这就是所有图表要做的数学事情。
这种古老的“计算器”,按现代理解,起到了将圆的变化直接表达为正方和三角变化的编程功能。
从图表中,我们往往可以“直观地”看到一些数学现象。这让我们想起了混沌坐标系,一些看似无序的线,本来看似不相关的两个要素,却让我们看到了其中几何的规律特征。
图表与混沌坐标系这两种数学方法的思路是一致的,可以说是有数学思想传承的,跨越近2000年。
轮中轮中,融合了画圆为方的数学思想,通过利用其中正方、三角的旋转,提出了圆如果变大变小,正方边长尺寸变化动态的、定量的解决方案。
即便现在,给你当时一样的数学约束,你设计一张图表,你看看是否有机会超越轮中轮这个图表,真的无法超越。“当时一样的数学限制”这个前提,已经让这张图表成为当时那种条件下的终极。至少基于这种数学限制条件,笔者没有更好的数学模型替代这个图表。历史性的看待古人在当时的伟大和进步,或许是公正的。
笔者在《股市预测数学基础》中提出来的四维拟合方法借助了波的跨维属性,已经是这之后2000年具有的数学前提条件了。超越图表功能是属于正常的,因为这个结果是站在2000年来数学发展的基石上面的。
跨维是什么概念?计算机的基本数学原理是二进制的表达,通过利用半导体输出可以有确定的两种可能性来实现。有电的电路是1,没电的电路是0。把有电的状态分解为两个状态,有电和没电。有电是一个状态,一个点算0维,那么这个半导体起到的作用实际就是从0维跨越到一维,一维的两个限制性的终极点被表达出来。
既然0和1可以被表达,那么利用二进制的数学换算方法,所有的整数数字就都可表达。这就是计算机的最基本的数学原理。
前苏联还研究过三进制的计算机原型,取得了很大进展,但可惜的是不了了之。
很多人还纠结在是不是西方人利用周易的数学原理,发现了计算机的数学原理中。阴爻为0,阳爻为1,那么64个二进制的数字就表达出来。如果这么设想,按照数学排列组合,这个结果是唯一的,肯定是64个。但是,谁说阴爻就是0,阳爻就是1了,这才仅仅是它数理中的一个小节点。阴爻可以是任意数,那么阳爻如何对应?易经数理要是那么简单,早就被历史淘汰了。
阴阳翻译成古代的中国话就是太极生两仪。这就是计算机的跨维思路的第一步。
这种跨维性是可数学传导的。如果尊从同样的线性规律,在三维之内可以直接拟合线性表达。三维-四维之间线性规律发生改变,需要用间接的拟合方法。
这实际纠结的数学问题是现实的曲率是否可以达到360度或者大于360度,数学是可以的,而现实是否可以?简单说,光在引力作用下,可否绕圈或形成螺旋线。黑洞视界范围内,这是数学成立的,但是这无法直接证实,现在间接证实。我们这个时空的曲率有多大,是否超越360度呢?由于数学拟合结果的解读性存在的人为解读问题,笔者对数学结果是否可以拟合这个时空领域的现实存在疑问。只有当把黑洞的数学规律简单扩展复制到我们这个时空,大爆炸才可数学成立。但是这种“简单扩展复制规律”有没有科学性、数学性,可不可以证实?这是一种影响结论的前提假设,是不是真理依然需要证实。
至少从古代数理循环来看,循环数理规律不是永恒存在,当扩大几次后,会出现规律改变或模糊的问题。西方人对数理研究这么久,应懂这个道理。可是在自然科学领域的物理界,居然出现这种简单的、影响结论的、可对可错的前提设定性假设,很奇怪!如果您想通,谢谢您告诉我,感激不尽。
寻访江恩之路----一、江恩轮中轮图表数理发展的历史简介
最新推荐文章于 2025-10-24 21:16:37 发布
717

被折叠的 条评论
为什么被折叠?



