- 博客(7)
- 收藏
- 关注
原创 使用基于LSTM的变分自编码器对股票序列数据进行降噪并重构
考虑到针对股票市场的噪音特性,我们尝试使用变分自编码器(VAE)对价格数据进行重构,并且考虑到股票数据的时序性,我们在自编码器网络中加入LSTM网络提升表现。第一步:获取数据:pip install tushare#获取使用接口def get_token(): ts.set_token("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") pro=ts.pro_api() return pro##获取数据列表def get_d
2022-04-01 17:24:16 2181 2
原创 使用autoencoder技术提取特征并降维
考虑到在针对股票市场的预测模型中的变量过多/维数过高问题,我们需要降维。这里我们使用autoencoder技术(AE)首先本文使用调用tushare库提取股票历史数据。pip install tushare#获取使用接口def get_token(): ts.set_token("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") pro=ts.pro_api() return pro##获取数据列表def get_data_
2022-01-02 21:52:43 2588 1
原创 强化学习中量化交易的状态空间设置
状态空间就是"state spcae",是环境输入给RL代理的当前信息。当下的研究大多使用这三种设定方式:1、OHCLV data2、financial technical indicators3、结合一二后进行深度学习进行特征选择。OHCLV数据可以使用tushare进行提取;安装方式为:pip install tushare提取数据分为三步:#第一步获取使用接口def get_token(): ts.set_token("xxxxxxxxxxxxxxxxxxxxxxxxx
2021-10-05 13:22:59 707
原创 对股票历史数据OHCLV转换为金融技术指标
显然,股票的OHCL为高相关性的数据(Open,High,Close,Low),喂给神经网络时会带来较少的信息,本文介绍了两种将OHCLV转化为金融技术指标的办法,从而减少相关性,更好的描述动态,复杂的,非线性的,充满噪音的股票市场。首先本文使用调用tushare库提取股票历史数据。pip install tushare#获取使用接口def get_token(): ts.set_token("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
2021-06-26 14:42:05 470 1
原创 检查DataFrame中的缺失值
#检查DataFrame中的缺失值check missing datadata_df.isnull().values.any()
2021-04-22 09:48:12 1021
原创 LSTM GRU Bidirectional-LSTM股票预测
本文使用keras搭建神经网络,实现基于深度学习算法的股票价格预测。本文使用的数据来源为tushare,一个免费开源接口;且只取开票价进行预测。import numpy as npimport tushare as tsimport matplotlib.pyplot as pltplt.style.use('fivethirtyeight')import pandas as pdfrom sklearn.preprocessing import MinMaxScalerfrom keras
2021-03-20 21:33:06 821
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人