使用autoencoder技术提取特征并降维

本文介绍了如何在股票市场预测中解决高维问题,通过使用autoencoder(AE)技术进行特征提取和降维。首先,从tushare库获取股票历史数据,然后对OHLCV数据和金融技术指标进行归一化和转换为tensor。接着,采用sequitur库进行特征提取,设置encoding_dim以确定降维后的特征数量,并通过添加噪音提高模型的鲁棒性。encoder部分负责输出提取的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

考虑到在针对股票市场的预测模型中的变量过多/维数过高问题,我们需要降维。这里我们使用autoencoder技术(AE)
首先本文使用调用tushare库提取股票历史数据。

pip  install tushare
#获取使用接口
def get_token():
    ts.set_token("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
    pro=ts.pro_api()
    return pro


##获取数据列表
def get_data_list(cursor,sql,conn):
    cursor.execute(sql)
    res=cursor.fetchall()
    conn.commit()
    ts_codes_list=list(res)
    ts_codes_list=[",".join(list(x)) for x in ts_codes_list]
    return ts_codes_list
##获取数据
def get_data(ts_codes_list,pro):
    daily=pd.DataFrame(columns=["ts_code","trade_date"
AutoEncoder(自编码器)是一种无监督学习的神经网络模型,常用于数据特征提取。在MATLAB中,你可以利用其内置的Neural Network Toolbox来构建和训练自编码器。 以下是使用MATLAB创建简单AutoEncoder的基本步骤: 1. **数据预处理**:首先加载需要分析的数据集,对其进行归一化或标准化,以便更好地训练网络。 ```matlab data = load('your_data.mat'); inputData = data.data; % 假设数据存储在变量data中 ``` 2. **构建网络结构**:定义AutoEncoder的结构,通常包含一个输入层、一个隐藏层(作为编码器),以及一个解码层恢复回原始度。比如,一个三层的AutoEncoder可以是这样的: ```matlab numInputNodes = size(inputData, 2); % 输入节点数 encodingDim = floor(numInputNodes / 2); % 编码度 hiddenLayerSize = [encodingDim numInputNodes]; % 隐藏层尺寸 aeNet = feedforwardnet(hiddenLayerSize); aeNet.Layers(1).TransferFunction = 'tansig'; % 使用激活函数(如sigmoid或tanh) aeNet.Layers(3).TransferFunction = 'linear'; % 输出层保持线性,以便直接解码 ``` 3. **训练网络**: ```matlab options = trainingOptions('adam', ... % 使用Adam优化器 'MaxEpochs', 50, ... % 设置最大迭代次数 'MiniBatchSize', 64, ... % 批量大小 'Shuffle', 'every-epoch', ... % 每次迭代都打乱数据 'Plots', 'training-progress'); % 显示训练进度图 aeNet = trainNetwork(inputData', aeNet, options); ``` 4. **特征提取**:训练完成后,通过网络的隐含层(编码器部分)对新的数据进行编码,得到的是数据的低表示,即特征向量。 ```matlab encodedData = activations(aeNet, inputData', 'encode'); % 对新数据进行特征提取 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值