高数 | 【一元函数积分学】不定积分基础知识点梳理 及 经典例题、李林880求不定积分例题

一、两个概念

(1)不定积分的概念与性质

 

 

(2)不定积分基本公式

不定积分经典例题


二、三种主要积分法

(1)第一类换元法(凑微分法)

                           还是凑x                           

经典例题

 

(2)第二类换元法

                           凑 t 再 回 代                          

 

非三角函数 也可以。 如:

 

(3)分部积分法

 经典例题


三、三类常见可积函数积分

1)有理函数积分

经典例题

 

 

 2)三角有理式积分

 经典例题

3)简单无理函数积分

 


综合例题

 

①对于被积函数是连续的分段函数,可以分段求,分段后只要调整任意常数,使得原函数连续即可。不必讨论是否可导,可以验证原函数在该点可导且导数值等于f(x)。

②连续函数必有原函数。连续函数的变上限积分即为其具体原函数。利用变上限积分没有任意常数。最后加C即可。

不定积分三角代换不用加绝对值。

这个解法在换元时限制了t为第一,四象限角,所以才会有这样的结果,换元积分只要换元后的变量能使原变量的定义域不变,则换元后的变量的无论定义域如何,结果都是正确的。

 

 

 


求不定积分例题

综合系列一览

凑微分法


有理函数积分


倒代换


 


 




 1.换元 tant

 2.凑微分



换元比较麻烦

凑微分


 凑微分 


三角函数凑微分系列

(I)

①分子写成sin方+cos方的平方 再打开拆项

②分子分母同乘cos方,凑d(tanx)

③直接凑微分

(II)①分子分母有理化 ②三角公式 把sinx利用二倍角,1+sinx则可以写成完全平方式,再分子分母同除cos方x/2

(III)(IV)分子是分母的线性组合

把分子写成Ax分母+Bx分母的导数

或利用f(x)可以表示为一个偶函数和一个奇函数之和。


 巧凑积分系列

 

 


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值