不定积分及简单例题

一 基本概念

原函数 [函数]

​ F(x)定义于I,对一切x∈I,有F’(x) = f(x)【确保可导】,则称F(x)为f(x)的原函数。

存在定理

  • f(x)在I区间上连续(变上限积分可导),则f(x)在I上一定存在原函数。反之不对
  • f(x)有第一类间断点(可去、间断),则无原函数【符号函数sgn的“原函数”在x=0点不可导】;第二类间断点可能有原函数

不定积分 [集合]

​ f(x)的所有原函数F(x)+C 称为f(x)的不定积分。记为∫f(x)dx = F(x)+C

image-20210406201450209

基本性质
∫ [ f ( x ) ± g ( x ) ] d x = ∫ f ( x ) d x ± ∫ g ( x ) d x ∫ k f ( x ) d x = k ∫ f ( x ) d x ( k ≠ 0 ) d ∫ f ( x ) d x = f ( x ) d x , ∫ d f ( x ) = f ( x ) + C \int \bigg[f(x) \pm g(x) \bigg]dx = \int f(x)dx \pm \int g(x)dx \\ \int kf(x)dx = k\int f(x)dx \quad (k\neq 0) \\ d \int f(x)dx = f(x)dx,\int df(x)=f(x)+C [f(x)±g(x)]dx=f(x)dx±g(x)dxkf(x)dx=kf(x)dx(k=0)df(x)dx=f(x)dx,df(x)=f(x)+C

奇偶性 (以f(x)为核心,向两边推导)

f’(x)f(x)F(x)
⬅奇➡
⬅偶不确定,有常数
周期⬅周期不一定是周期

二 公式与积分法

求完不定积分记得加一个常数C

2.1 基本公式

image-20210406202035132

补充

∫ 1 1 + cos ⁡ x d x = ∫ 1 2 cos ⁡ 2 ( x / 2 ) d x = ∫ sec ⁡ 2 ( x / 2 ) d ( x / 2 ) = tan ⁡ x 2 + c \int \frac{1}{1+\cos x}dx = \int \frac{1}{2\cos^2 (x/2)}dx = \int \sec^2 (x/2)d(x/2) = \tan \frac{x}{2}+c 1+cosx1dx=2cos2(x/2)1dx=sec2(x/2)d(x/2)=tan2x+c

2.2 换元积分

凑微分法

φ ( x ) \varphi(x) φ(x)是可导函数, ∫ f [ φ ( x ) ] φ ′ ( x ) d x = ∫ f [ φ ( x ) ] d [ φ ( x ) ] = F [ φ ( x ) ] + C . \begin{aligned} \int f[\varphi(x)] \varphi^{\prime}(x) \mathrm{d} x =\int f[\varphi(x)] \mathrm{d}[\varphi(x)] =F[\varphi(x)]+C . \end{aligned} f[φ(x)]φ(x)dx=f[φ(x)]d[φ(x)]=F[φ(x)]+C.

注解:

image-20210406211750886

换元积分法

image-20210406212517581

2.3 分部积分

适用于两类不同函数相乘,反对幂指 u-v‘,如反三角和ex出现时候倾向把ex放入d(ex)

推导
( u v ) ′ = u ′ v + u v ′ u v = ∫ u ′ v d x + ∫ u v ′ d x = ∫ v d u + ∫ u d v ∫ u v ′ d x = ∫ u d v = u v − ∫ v d u \begin{aligned} &(uv)' = u'v + uv' \\ & uv = ∫ u'vdx + ∫uv'dx = ∫vdu + ∫udv\\ & ∫uv'dx = ∫udv = uv - ∫vdu \end{aligned} (uv)=uv+uvuv=uvdx+uvdx=vdu+udvuvdx=udv=uvvdu

使用情形

image-20210406213231579

注意

​ 使用分部积分时,被积函数里ln 和 arc 只能存在一个,把另一个和其他放到后面d()里面去。

​ 积不出 不等于 没有原函数,只是原函数不是初等函数

​ p(x)*三角 一般把三角放后面、p(x)反三角把p(x)放进去、ex可能要多次

【例题】2018数一

image-20221129145606401

三 三角有理函数

3.1 有理函数积分

30多年只考过2、3题

有理函数概念:设R(x) = P(x)/Q(x),其中P(x),Q(x)为多项式,称R(x)为有理函数。[deg:次数]
d e g P ( x ) < d e g Q ( x ) , R ( x ) 为真分式 d e g P ( x ) ≥ d e g Q ( x ) , R ( x ) 为假分式 deg P(x) < deg Q(x),R(x)为真分式 \\ deg P(x) \ge deg Q(x),R(x)为假分式 degP(x)<degQ(x),R(x)为真分式degP(x)degQ(x),R(x)为假分式
两种积分方法

  • R(x)为真分式时,将R(x)拆成部分和
  • R(x)为假分式时,将R(x)拆成多项式+真分式,再把真分式拆成部分和

具体的手法

  1. 真分式 分子次数小于分母 拆成部分和

情况1 普通情况 Δ>0 因式分解

3 x − 5 ( 2 x + 1 ) ( x − 2 ) = A 2 x + 1 + B x − 2 A + 2 B = 3 , − 2 A + B = − 5 \frac{3x-5}{(2x+1)(x-2)} = \frac{A}{2x+1} + \frac{B}{x-2} \\ A+2B = 3,-2A+B = -5 \\ (2x+1)(x2)3x5=2x+1A+x2BA+2B=3,2A+B=5
情况2 分母有平方

x 2 − 3 ( x + 1 ) 2 ( 2 x − 1 ) = A x + 1 + B ( x + 1 ) 2 + C 2 x − 1 \frac{x^2 - 3}{(x+1)^2(2x-1)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{2x-1} (x+1)2(2x1)x23=x+1A+(x+1)2B+2x1C

情况3 分母中有**(ax+b)n**
A 1 a x + b + A 2 ( a x + b ) 2 + . . . + A n ( a x + b ) n \frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+...+\frac{A_n} {(ax+b)^n} ax+bA1+(ax+b)2A2+...+(ax+b)nAn

情况4 Δ<0且分子为常数 凑平方和用反三角
∫ d x x 2 + x + 1 = ∫ d ( x + 1 / 2 ) ( 3 2 ) 2 + ( x + 1 / 2 ) 2 = 2 3 a r c t a n [ ( x + 1 / 2 ) 3 2 ] + C ∫\frac{dx}{x^2+x+1} = ∫\frac{d(x+1/2)}{(\frac{\sqrt{3}}{2})^2 + (x+1/2)^2} = \frac{2}{\sqrt{3}}arctan\bigg[\frac{(x+1/2)}{\frac{\sqrt{3}}{2}}\bigg]+C \\ x2+x+1dx=(23 )2+(x+1/2)2d(x+1/2)=3 2arctan[23 (x+1/2)]+C
情况5 Δ<0且分子带有x,分母可凑平方公式, 分母求导为2x+1,往它那边凑
∫ x + 2 x 2 + x + 1 d x = 1 2 ∫ ( 2 x + 1 ) + 3 x 2 + x + 1 d x = 1 2 ∫ d ( x 2 + x + 1 ) x 2 + x + 1 + 3 2 ∫ d ( x + 1 / 2 ) ( 3 2 ) 2 + ( x + ( 1 / 2 ) ) 2 ∫\frac{x+2}{x^2+x+1}dx = \frac{1}{2}∫\frac{(2x+1)+3}{x^2+x+1}dx = \frac{1}{2}∫\frac{d(x^2+x+1)}{x^2+x+1} + \frac{3}{2}∫\frac{d(x+1/2)}{(\frac{\sqrt{3}}{2})^2 + (x+(1/2))^2} x2+x+1x+2dx=21x2+x+1(2x+1)+3dx=21x2+x+1d(x2+x+1)+23(23 )2+(x+(1/2))2d(x+1/2)
情况6 分母x带有平方项
∫ a x ( 1 + x 2 ) = ∫ A x + B x + C 1 + x 2 ∫\frac{a}{x(1+x^2)} = ∫\frac{A}{x} + \frac{Bx+C}{1+x^2} x(1+x2)a=xA+1+x2Bx+C

情况7 分子分母次数差异较大时
∫ 1 x ( x 6 + 3 ) d x = 1 6 ∫ d ( x 6 ) x 6 ( x 6 + 3 ) = 1 6 ∫ d t t ( t + 3 ) = 1 6 ∗ 3 ln ⁡ x 6 x 6 + 3 + C \int \frac{1}{x(x^6+3)}dx = \frac{1}{6} \int \frac{d(x^6)}{x^6(x^6+3)} = \frac{1}{6} \int \frac{dt}{t(t+3)} = \frac{1}{6*3}\ln \frac{x^6}{x^6+3} + C x(x6+3)1dx=61x6(x6+3)d(x6)=61t(t+3)dt=631lnx6+3x6+C
其他技巧

  • 上下约分

∫ x 2 + 1 x 4 + 1 d x = ∫ 1 + 1 / x 2 x 2 + 1 / x 2 d x = ∫ d ( x − 1 / x ) ( x − 1 / x ) 2 + ( 2 ) 2 d x = ∫ d t ( 2 ) 2 + t 2 = 1 2 a r c t a n t 2 \int \frac{x^2+1}{x^4+1}dx = \int \frac{1+1/x^2}{x^2+1/x^2}dx = \int \frac{d(x-1/x)}{(x-1/x)^2+(\sqrt{2})^2}dx = \int \frac{dt}{(\sqrt{2})^2+t^2} = \frac{1}{\sqrt{2}}arctan \frac{t}{\sqrt{2}} x4+1x2+1dx=x2+1/x21+1/x2dx=(x1/x)2+(2 )2d(x1/x)dx=(2 )2+t2dt=2 1arctan2 t

  • 若带根式,则考虑分子\分母有理化
  1. 假分式 分子次数大于分母拆为多项式与真分式子之和

x 3 + 3 x 2 ( 1 + x ) = x 3 + x 2 − x 2 + 3 x 2 ( 1 + x ) = 1 + 3 − x 2 x 2 ( 1 + x ) \frac{x^3+3}{x^2(1+x)} = \frac{x^3+x^2-x^2+3}{x^2(1+x)} = 1+\frac{3-x^2}{x^2(1+x)} x2(1+x)x3+3=x2(1+x)x3+x2x2+3=1+x2(1+x)3x2

【例题】2012数一

image-20221205143717482

3.2 反三角求导

  • arctan x

( 1 a a r c t a n ( x + b a ) ) ′ = ∫ d ( x + b ) a 2 + ( x + b ) 2 (\frac{1}{a}arctan(\frac{x+b}{a}))' = ∫\frac{d(x+b)}{a^2+(x+b)^2} (a1arctan(ax+b))=a2+(x+b)2d(x+b)

  • arcsin x

a r c s i n ( x + b a ) = ∫ d ( x + b ) a 2 − ( x + b ) 2 ( a > 0 ) arcsin(\frac{x+b}{a}) = ∫\frac{d(x+b)}{\sqrt{a^2-(x+b)^2}} (a>0) arcsin(ax+b)=a2(x+b)2 d(x+b)(a>0)

  • arccos x

a r c c o s ( x ) = ∫ − 1 d x 1 − x 2 arccos(x) =∫-\frac{1 dx}{\sqrt{1-x^2}} arccos(x)=1x2 1dx

3.3 万能公式

一般不用

​ 令 tan ⁡ x 2 = t \tan \frac{x}{2}=t tan2x=t,则 ∫ R ( sin ⁡ x , cos ⁡ x ) d x = ∫ R ( 2 t 1 + t 2 , 1 − t 2 1 + t 2 ) 2 1 + t 2 d t \int R(\sin x, \cos x) d x=\int R\left(\frac{2t}{1+t^{2}}, \frac{1-t^{2}}{1+t^{2}}\right) \frac{2}{1+t^{2}} d t R(sinx,cosx)dx=R(1+t22t,1+t21t2)1+t22dt

image-20221002221524775

3.4 三角函数

常见方法
sin ⁡ x = cos ⁡ ( x − π 2 ) ( tan ⁡ x ) ′ = sec ⁡ 2 x 1 + cos ⁡ x = c o s 2 x 2 − sin ⁡ 2 x 2 = 2 c o s 2 x 2 − 1 = 1 − 2 sin ⁡ 2 x 2 \sin x = \cos (x-\frac{\pi}{2}) \\ (\tan x)'= \sec ^2 x \\ 1 + \cos x = cos^2\frac{x}{2} - \sin^2\frac{x}{2} = 2cos^2\frac{x}{2}-1=1-2\sin^2\frac{x}{2} \\ sinx=cos(x2π)(tanx)=sec2x1+cosx=cos22xsin22x=2cos22x1=12sin22x

四 基本题型

4.1 概念

image-20210406215110304

image-20210406221138790

image-20210407155737260

4.2 换元积分法

image-20210407164919434

  1. 上下除以x平方凑平方公式 + 常数平方 ==> 反三角公式

image-20210408193751678

image-20210408204603397

image-20210409155832590

4.3 分部积分

image-20210409163445672

image-20210409214408371

image-20210412220524401

image-20210412223702148

4.2 有理与三角函数

image-20210412233012434

image-20210416143051097

  1. 出现 1+cos x可以考虑化为2cos^2 (x/2),出现sinx,cosx,可以考虑同时除以cosx化为secx。(tanx)’ = sec^x

image-20210416145618328

image-20210416150807112

image-20210416150702601

image-20210416153359134

image-20210416153924223

image-20210416153935633

五 接力题典

5.1 入门

image-20210411163707783

  1. image-20210411175806126

image-20210411180003082

image-20210411180917947

5.2 基础

  1. image-20210416160153299

5.3 提高

六 补充

  • 10
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值