高数 | 【一元函数积分学】定积分、变限积分 & 一元函数积分学李林880 & 巧解例题

 一、定积分的概念、性质及几何意义

巧解:利用奇偶性,快速选出答案。

利用图形帮助解题。

设出具体函数。


 二、定积分的计算

1.利用几何意义

 

 2.换元法巧解

 

 

3.区间平移

 

 本题也可用用区间再现

 4.绝对值符号讨论

 


三、变上限定积分

 三种变限积分形式

 

 

 

 


四、李林 相关证明题及综合题

1. 证明题

 一般遇到二阶导,可以考虑

①泰勒展开。

②两次拉格朗日

遇到定积分形式不等式,一般考虑把其中一个字母推广为x。

 使用积分中值定理时,如果不知道该取开还是闭,一般取开区间。

区间再现!+ 恒等变形

妙啊!!


2. 基础解答题

 

 参数方程、上下限

微元法、dv = 截面面积 ds


3. 综合选择题

定积分的化简问题:

  • ①换元:区间再现 x=a+b-t
  • ②区间平移:奇偶性
  • ③拆分:积分区间可加性

解:拆分,因sint在两个区间正负不同。

 

 解:利用拉格朗日反写 f(x)

 

无穷小比较:

  • ①用定义,求极限之比
  • ②挨个看,他与x的几阶是同阶的

因为分子是变限积分函数,所以求极限一定会洛必达。

 

反常积分首先看瑕点。

 


4. 综合填空题

两个解法:设出F(x)

 

 


5. 综合解答题

 

凑整体!

 

 凑整体!

 

 

 

 夹逼准则放缩过渡一下~再利用定积分定义!

如果最大的分母和最小的分母作商取极限的结果为1,则可以放缩~~~~

如果作商结果为1,意味着分母之间差距很小。

 


·  递推关系

递归:用分部积分!!

不等式利用单调性!!

妙!!!!

 或者 三角函数转化成一个幂函数

 

 

·  证明类

类似同济教材 拉格朗日中值定理的证明 用曲线减直线 构造直线方程。

 

找到原函数,中三个函数点,两两罗尔。

抽象函数:积分中值定理或分部

 

拉格朗日中值定理的特殊形式

凑导数定义

 

零点定理失效,退而求其次。

构造辅助函数,利用罗尔定理。

 

 

第一问。基本上都是要换元。

相反数换元 令x=—u。周期换元 令x=u+T。但是第一问不好操作。

本题应该使用区间再现。区间没变首先想到区间再现。

                    法一:假设F(x)                    

类似上文综合填空题第一个。题目在李林2023 880 p20 第2个填空。

                    法二:积分中值定理                  

                 法三:积分换元 + 洛必达                  


·  应用类

 

 

   三种积分方法。 

 

           无穷个体积。之前考研出现过 e^-x sinx  的面积           

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值