来源:深度学习技术前沿
编辑:Evans
转载请注明来源
【导读】最近正值2022互联网求职秋招季,给大家分享一下这个问题!本文节选了知乎上的优质回答,希望能帮助到大家!练好内丹才是最重要的,希望大家求职顺利!
作者:霍华德
链接:https://www.zhihu.com/question/456114288/answer/1908052989
来源:知乎
这也算关于算法工程师的经典谣言之一了。
如果你问,各大公司xx lab不用做业务,做做研究发发论文美滋滋的研究型算法岗真的需要顶会才能入场吗?那我的答案是,真的。这种岗位不止要顶会,还需要博士学位。
但对于更多的业务向的算法岗,这就是谣言。
至少今年看来,感觉想转算法的很多,但真有点水平的并没有增加。有顶会的更是凤毛麟角被抢爆,根本不敢要求实习生有顶会,只要有能力有想法能干活就行。
前前后后大概面了几十个学生,一周能面十几个。我可以为大多数学生做一个画像:
一个研究课题,结合课题相关发表的一些论文。大多数CCF B或IEEE的普通杂志。CCF A会议的极少,有CCF A论文优势极大。
没有或者一段小公司实习。有独角兽级别的实习经历优势已经极大。
没有或者一段比赛,甚至有学生写天池或kaggle 教程型的比赛(是的,泰坦尼克号那个),这种真没用,只能说明你入门了。还是要找个正儿八经的顶会比赛或者天池较主流的比赛。
大多数学生基础不牢,过拟合说不清,sgd和adam分不清,基础不牢是极大的减分项。
大多数学生代码能力不足,我不爱考leetcode,你做检测的至少iou怎么算要知道吧,但写不出写不对的学生很多,能正确写出来的都算优秀的了。(还是说学生都去刷leetcode了,这个面试官怎么不按套路出牌啊)
最后鼓励你一下,真心热爱ML和DL的同学,不用害怕,勇敢往里冲。(定义一下什么真心热爱,可以是没日没夜废寝忘食的打比赛,可以是一天读十几篇paper不会累,可以是一天写12小时代码越写越兴奋)
对于只是看到高薪(其实也不高了,现在和开发岗也差不多,能多出3000块?)想来混饭吃的,我还是劝退的,这行聪明人太多,混是混不走的。
再从一个角度谈一下,就是这工作根本没那么高大上,对超级牛逼的学生并没有那么强的吸引力。
业务向的算法岗,50%的时间搞数据,30%搞评测。20%的时间做模型。本来就很多鸡毛蒜皮琐碎的事情。真一手顶会的学生愿意来?不也正说明了这行的门槛根本不可能那么高,顶会才能入场。
那可能在很多网上抱怨的人眼里这都不算工作吧,搞研究做非常neat科研工作的才配叫“算法岗位”
业务向的岗位,是未来增长的主要方向。研究向的岗位,除了深度学习刚火那几年产生了一批,现在基本都属于冻结状态。
所以想入行的同学考虑清楚,以后大概率你的工作岗位是业务向的。
作者:Giant
链接:https://www.zhihu.com/question/456114288/answer/1952754480
当然不是啦,咱们拿数据说话!
以NLP四大顶会ACL,NAACL,EMNLP,COLING为例,2019年平均接收率分别为25.7%(447篇),26.3%(281篇),25.5%(351篇),33%(331篇),每年合计人数不超过1500人[1],这里面还包括很多没有毕业继续深造、从事机器学习(非NLP)的同学。
同时,我身边拿到大厂sp以上算法offer的同学中,有一作顶会的比例不到20%。
下面我结合自身的科研经验,从4个方面聊一聊算法岗正确入场姿势。
为什么近些年算法劝退消息频发?
哪些岗位真的需要算法顶会?
0顶会如何入场大厂算法岗?
新人想要从事算法的7个误区
一、为什么近些年算法劝退消息频发?
从18年的逐渐饱和,19年诸神黄昏到20年灰飞烟灭,关于算法的劝退呼吁此起彼伏,不知道今年还会出现怎样的新词。
造成这样的原因我觉得主要有3个:
1)算法岗准入门槛降低,吸引了跨专业的同学一股脑往里“挤”;例如自从BERT的出现,NLP的入门门槛大幅下降,会跑BERT很多传统NLP任务基本上已解决的差不多;
2)算法需求增量开始低于人数增量,虽然很多大厂业务增长很快需要大量业务导向的算法工程师,但想从事算法工作的同学增量明显更快,算法市场逐渐从供过于求,趋于饱和向供不应求转变;
3)真正技术精湛的算法工程师很少;我相信真正的顶尖牛人或技术大佬根本不存在内卷这一说法,反而是各大厂高薪挖人的重点目标;所以这里的劝退主要面向半路出家、基础没打好就往里冲的同学。原因很简单:可替代性太强;例如公司有一个文本分类需求,基本任何一个接触过NLP的同学都能很快做出来。
所以大家如果把技术打磨的够好,或者积攒了项目经验,没有顶会也不用畏惧所谓“劝退”的传闻,因为你早已不在被劝退的范围中了。
二、哪些岗位真的需要算法顶会?
算法岗需要顶会才能入场是个伪命题,但加上一个定语就没问题:部分算法岗需要顶会才能入场。没有顶会的同学,找工作时最好避开这些“坑”。
这些岗位基本都是 research 科研岗位,普通公司通常养不起,一般只有大厂的 lab 实验室会有head count,例如阿里达摩院,腾讯AILab,字节AILab(主要是李航老师组)等等。另外 research 岗位大多只面向博士。
计算机专业的博士想要顺利毕业,大概率是有算法顶会的(我们导师的博士毕业要求是4篇CCF-A一作),所以我们普通硕士/本科同学和他们PK肯定会吃亏。
除此之外,大厂的顶级offer也需要顶会作为入场券,而且一般是3篇一作起步。这样的offer包括阿里星,华为天才少年,腾讯大咖,百度AIDU,美团北斗等等。当然,这些offer的薪水也绝对诱人,总包从60W+—200W+不等。
三、0顶会如何入场大厂算法岗?
上一部分没有提到的算法岗,包括纯业务的 development 或业务科研相结合的 development & research 岗,一般都不会拿顶会作为硬性门槛(腾讯微信Team这样异常火爆的部门除外)。
接下来聊聊大家感兴趣的话题,没有顶会如何入场大厂算法岗。
其实用一句话可以概括:不错的学历 + 扎实的理论基础 + 丰富的项目经验 + 正常的逻辑和表达沟通能力即可。
不错的学历一般指国内的211本科/硕士及以上,双非也不意味着没有机会,只是对其他几条的要求会更高。
扎实的基础包括传统机器学习算法,数据结构,coding,概率论基础和英语阅读能力。关于如何入门机器学习,之前我写过一篇5K长文可以帮到你:机器学习该怎么入门?,里面列举了详细的学习路线。
非 research 岗位,多少会和业务打交道,如果有实习或项目经历,入职就能上手干活,会大量减少企业的培训成本。在面对业务需求时,扎实的理论基础可以帮助我们从不同角度分析与定义问题,对数据与资源敏感,从而寻找最适合的解决方案。
在日常工作中,除了写代码经常需要跨部门沟通,彼此信息同步、明确需求和责任边界、确定优先级和deadline等等,沟通和逻辑能力必不可少。
除此之外,还能拥有顶会或者比赛Top5、名校背景,都是非必须但能锦上添花的加分项。
四、新人想要从事算法的7个误区
这一节主要结合自己过去3年的科研和实习经验,分享新生做算法的常见误区。
1)做算法就是要从0做到1。新人首先应该充分参考前人的工作和经验,形成对研究领域的整体认知;
2)做算法等于发论文。如果基础没打好就“all in”以发顶会为唯一目标,很容易方向跑偏,到最后可能同时错失paper和实习;
3)算法岗绝对高薪,读研就应该做算法。其实近几年算法和普通开发岗的差距越来越小,同等价位最多相差2-5K;
4)导师放养没人带,科研能力自然菜。手和脚长在我们自己身上,没人带尝试着去自学与自我驱动;
5)算法岗就是训模型,业务与我无关。其实业务导向的算法岗大部分时间都花在抽象业务问题与数据处理上,算法没有你想的那么高大上;
6)重复造轮子,凡事亲力亲为。遇到问题建议先Google或和组内同学/同事交流,同样的问题你思考3小时别人可能3分钟就解了;
7)算法岗需要顶会才能入场。当然不是,看完这个回答,答案应该非常清晰了哈。
综上所述,除了少数研究型岗位,大部分业务驱动的算法岗根本没有、也不需要顶会作为门槛。相比论文,对于大多数同学,打好基础积累项目经验反而是拿到优质算法offer的“必经之路”。
作者:叶小飞
链接:https://www.zhihu.com/question/456114288/answer/1940621730
当然不需要。其实回答这个问题只需要看一组简单的数据(以下计算非常粗糙,只是大概给个范围,如有不到之处还请指正)。
让我们以计算机视觉为例,只讨论一作的情况。计算机视觉著名的三大顶会是CVPR, ECCV, ICCV,其中后俩是隔年举办。CVPR近基年平均每年接受的论文有1600篇左右,鉴于题主应该问的是国内岗位,所以这1600篇里来自国内的机构大概有40%,也就是640篇。这些文章的一作应该至少有一半是PhD, 由于PhD一般都会有一两篇顶会论文,所以题主问的应该是硕士本科是否需要顶会,那么除去PhD, 剩下只有两百篇。这也就是说,每年CVPR一作来自国内硕本生的数量最多是300篇。
ECCV和ICCV接受状态差不多,基本一千多篇被接受,但由于他俩是隔年举办,我们把它们看做一个会议、也就是每年国内硕本能拿这俩会议一作的也就是300篇。如果我们把NIPS, AAAI也勉强算作计算机视觉顶会(这个勉强指的不是质量勉强,而是这俩跨了很多AI领域),鉴于他们的录取文章数目差的也不太多,最后可以得出一个结论:
每年国内能拿到计算机视觉顶会一作论文的硕本生最多只有1200个人。至于二三作,个人认为对找工作帮助没有那么大,在这不给予讨论。一般本科生大三开始写论文,硕士第一年用来积累第二年开始发论文,所以二者在毕业前都有两年时间,一般本硕生两年能发一篇一会顶作就很不错了(大佬请屏蔽此话),综上所述,每年国内本硕应届生里有计算机视觉顶会一作的也就差不多一千多个人,这个数字还是一个被高估了的数字。
很明显,全国范围内的计算机视觉相关的岗位是远远大于一千这个数的(如果比这个数小,各位还是都退了吧),所以至少从一般的计算机视觉岗位来说,一作顶会是很大的加分项,绝不是必须项。
作者:夕小瑶
链接:https://www.zhihu.com/question/456114288/answer/1908296692
写这篇回答只是希望提醒后丹们不要过度焦虑顶会的事情,修炼好自己的实力才是最重要的,合格的面试官不会因为你有顶会就给你放水,也不会因为你没顶会就不给你放好offer。
知乎上的顶会焦虑不会因为我的一个回答就改变什么,算法岗面试风气也不会改变啥,如果触犯了某些人的利益,那真是说声抱歉了:)
———原回答———
今年面了十几位候选人,有四五篇顶会被刷掉的,也有0顶会0比赛0实习放special offer的,有清北本科+PhD没拿到offer的,也有本硕双非大家抢着要的。过了简历关,至少我个人更希望把候选人放在同一起跑线上。
而且面的越多,越发觉得简历的漂亮程度跟最终offer与否以及offer等级似乎相关性也不是很显著。尤其简历上的顶会这种事情,与候选人实力的相关性我甚至觉得还不如一场热门比赛的头部名次来的有确定性。
举个例子
某名校实验室毕业手握几篇顶会的候选人,简历是真的漂亮,我抱着放SSP offer的期待去面他,结果发现每一篇顶会工作背后的领域发展的milestone、关键问题都搞不清楚,对主流数据集一份细致的case分析都没做过,再仔细一盘问,哦,简历上其中一篇NeurIPS原来是workshop。当然我也不否认workshop里有精彩的,继续仔细一盘问,main contribution就是在Transformer基础上把CNN、RNN一顿加,为啥加也不清楚,解决了啥问题也不清楚,唯一清楚的就是声称几个测试集都涨了零点几个点,觉得十分有效。
再比如,问两个基础问题(面向NLP岗):
为啥Transformer相比RNN更容易做深?更不容易出现梯度消失和爆炸?
把BERT的输入序列长度砍掉一半,模型参数量和计算量如何变化?
就能让相当多简历上挂顶会的候选人懵逼,这确实是我始料未及的。
我觉得很多后丹搞错了一点,顶会不应该是直接追逐的目标,而是深度思考和实践后往前更进一步的产物。你研究NLP,对手里的模型、任务、方法连个稍微深入点的思考都没有,水出来一篇顶会有啥用呢?最多不就拿着忽悠一下能力不行的面试官么,那种盲目崇拜顶会的水团队,你拿到了offer想去吗?
所以,算法岗需要顶会才能入场吗?
先练好内丹吧。对应届生来说,简历上的东西不用三页两页,半页简历都是够的,对应届来说,coding、机器学习、NLP(CV岗此处换CV)的基础做扎实了,然后在某个方向上稍微深入一下,就够了。别基础都没打好就各种抱大腿刷简历,刷到最后自己都不知道自己在干啥,就本末倒置了。
推荐阅读
重磅!DLer-计算机视觉&Transformer群已成立!
大家好,这是计算机视觉&Transformer论文分享群里,群里会第一时间发布最新的Transformer前沿论文解读及交流分享会,主要设计方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、视频超分、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。
进群请备注:研究方向+学校/公司+昵称(如Transformer+上交+小明)
???? 长按识别,邀请您进群