高学历低就业率的“学历倒挂”现象!“硕士三年归来,仍是4500”。。。。

本文由软科综合整理

学历越来越高,工作却越来越难找,几乎成为应届毕业生们的一种共识。

据智联招聘发布的《2024年大学生就业力调研报告》显示,2024年,硕博学历应届毕业生offer获得率为44.4%,较去年下降12.3%,且低于本科生的45.4%,高学历低就业率的“学历倒挂”现象,已悄然出现。

6f1f5a7ee05937df3e1c8f7ffe4e2916.png

图源:智联招聘《2024年大学生就业力调研报告》

毕业生offer获得率下降的同时,我国今年的高校毕业生人数预计达到1179万人,同比增加21万,再创历史新高。研究生们,正在面临又一个“没有最难,只有更难”的就业季。

2912686b8405659d44621e373878e856.gif

“高学历”遭遇“低就业率”

每到求职季,“硕士毕业一年还没找到工作”、“985硕至今0 offer”、“硕士三年归来仍是4500”等帖子便充斥在社交媒体上,一篇篇帖子背后,凸显了当下毕业生的就业压力。

对于硕士生来说,选择读研的动机各种各样。据中国青年报进行的一项调查显示,有74.0%的受访者表示考研是为了提升学历,增加找工作的优势,59.6%的受访者是为了缓解就业压力,此数据勾画出大部分考生的心理:拿到高学历文凭,为在就业市场中“脱颖而出”。

但现实是,投入更多,回报并不一定更多。

在求职过程中,无论是薪资还是岗位类型,大部分硕士的求职预期相比本科时有所提高,但找工作却并没有预想的那样顺利。据调研显示2024届硕博毕业生的期望月薪达到12083元,远超本科生的6898元,这种期望与市场实际需求之间存在显著差距。

0e0d9f1ab76c9a5e062c96b3cdb28f64.jpeg

图源:小红书

在非“双一流”高校中,就业“学历倒挂”的现象更为凸显,调研显示,非“双一流”硕博毕业生offer获得率为33.2%,较去年下降17%,同时比普本院校本科毕业生的offer获得率低10.7%。没有名校的光环,但学历又处在上层,是整个硕士研究生群体中的大多数,尴尬的位置让其在就业市场中不免会出现“高不成低不就”的局面。

从另一角度来看,现有就业市场中,没有足够的岗位与硕士生匹配,且中高端岗位的数量在减少。有调研团队发现,企业收到的简历中,硕士的比例仍在增加,但目前70%—80%的岗位都是一线基础岗,要胜任这些岗位,往往本科学历就已足够,企业也倾向于招收“更便宜”的本科生。所以很多应硕士应届生会发现,多读了几年最后还是要和本科生竞争。

但不可否认的是,应届研究生的平均月薪和起薪相比本科生有所增长。

北京大学“全国高校毕业生就业状况调查”课题组调研显示,2021年博士、硕士、本科的月起薪算数平均值分别为14823元、10113元、5825元;中位数分别为15000元、9000元、5000元。2023年9月发布的《川渝地区2022年人力资源市场工资价位和行业人工成本信息》也显示,在川渝地区从业人员的学历越高,工资报酬水平越高,研究生、大学本科劳动者的工资报酬中位数分别是15.23万元/年、8.96万元/年。

面对充满不确定性的大环境,毕业生们找工作的心态也逐渐从“求好”向“求稳”转变。

调研显示,2024届求职毕业生中,51%认为“稳定最重要”,与去年比提升10个百分点,且更加热衷于“体制内”工作。同时,毕业生们加入求职大军的时间也在提前,超6成2024届毕业生,提前1年就开始找工作,“投简历要趁早,能校招不社招”成为大家心照不宣的拿offer法则。

afad3ba3e39cd3bfd2f0563b9ebd757e.gif

实力破万“卷”

求职观念、就业市场形势是导致“学历倒挂”的部分原因,越来越多的硕士乃至更高学历毕业生涌入市场,其实也是研究生扩招的“后遗症”。

今年毕业的硕士应来自于在2021年或2022年招收的学生。据教育部数据,2021年,研究生招生117.65万人,其中硕士生105.07万人。2022年共招收研究生124.25万人,其中硕士生110.35万人。到2023年,研究生招生数字再次攀高,全国共招收130.17万人,硕士生114.84万人比上年增长4.07%。

与招生数同样呈阶梯式增长的,还有研究生报考人数,考研市场上甚至掀起了一波从“双一流”高校向普通高校“逆向考研”的热潮,而这个来自三四年前的“回旋镖”,在今日正中硕士生们的“眉心”。

扩招之下,部分省市甚至出现了本研倒挂的现象。

399d916e3bd44d988ca78335474e1113.jpeg

图源:微博

作为全国优质教育资源最集中的地方,北京市教育委员会发布的《2022-2023学年度北京教育事业发展统计概况》显示,北京高校预计全日制毕业生数量约29.6万人,其中研究生(硕士和博士)16.08万人,多出本科生近2.5万人,研究生的毕业人数预计首次超过本科生。在北京市教委2024年3月公开的数据中,这一差值增长到2.9万。

在2024年的研考中,考研报名人数迎来了近9年来的首次下降。“考研热”降温的背后,是更多大学生对于未来职业规划有了深入思考和慎重考量。对于在读或已经毕业的硕士生来说,学历并非无用,它依然是很多行业岗位的敲门砖。例如医学生往往需要读完硕士,甚至博士,才能在就业市场有一席之地。另外有一些新赛道,对应届硕士生的需求在逐渐增长。猎聘大数据统计显示,新能源汽车、新材料、新能源等行业,对应届硕士生需求均同比增长超过100%。人工智能、大数据、生物技术等科技含量高的行业,学历门槛也相对较高。

就业市场有低潮期,也会迎来上升期。随着社会需求升级,多元技能的复合型人才将受到更多的青睐,从更长远的时间尺度看,研究生的理论素养、洞察问题的能力,以及未来的发展潜力,肯定还是相对有优势的。提前规划、积攒实力、多多探索,寻找适合自己的发力点,或许能在就业困境中闯出一条路。

推荐阅读

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

dde9771f2aa1b097fa41b8eac422269f.jpeg

👆 长按识别,邀请您进群!

01ab832684192ab3e42469d3df92140e.gif

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
数据集介绍:车辆目标检测数据集 一、基础信息 数据集名称:车辆目标检测数据集 图片数量: - 训练集:3,931张 - 验证集:1,126张 - 测试集:563张 - 总计:5,620张道路场景图片 分类类别: - Vehicle(车辆):覆盖多种道路场景下的机动车辆检测 标注格式: YOLO格式标注,包含归一化坐标的边界框信息,适用于目标检测任务 数据特性: 涵盖多角度、多光照条件的车辆目标,包含不同距离尺度的检测样本 二、适用场景 自动驾驶系统开发: 训练车载视觉系统实时检测周围车辆,提升环境感知能力 交通监控分析: 用于智慧城市系统统计道路车辆密度,优化交通流量管理 驾驶辅助系统研发: 集成至ADAS系统实现碰撞预警、车道保持等核心功能 计算机视觉研究: 为车辆检测算法研究提供标准化基准数据集 道路安全系统开发: 支持构建违规驾驶行为检测系统(如违规变道、跟车过近等) 三、数据集优势 专业场景覆盖: 数据采集自真实道路场景,包含城市道路、高速公路等多种环境 标注规范性强: 严格遵循YOLO标注标准,边界框与车辆位置高度吻合 多尺度检测支持: 包含近景特写与远景多目标场景,有效训练模型尺度适应性 算法适配性佳: 原生支持YOLO系列算法,可无缝衔接主流深度学习框架训练流程 工业应用价值: 直接服务于自动驾驶、智慧交通等前沿领域AI模型开发
内容概要:本文详细介绍了鸿蒙HarmonyOS网络开发中TCP客户端的相关知识和技术实现。首先,文章讲解了TCP协议的基本原理,包括其可靠有序的传输特性、与UDP的区别、三次握手机制和滑动窗口机制。接着,文章阐述了HarmonyOS与TCP客户端的关系,特别是在物联网设备通信、即时通讯应用和数据传输安全方面的应用。随后,文章逐步引导读者搭建HarmonyOS开发环境,申请网络权限,并通过创建项目、导入模块、绑定端口、连接服务端、发送与接收消息等步骤,实现了TCP客户端的基本功能。最后,文章展示了通过一个具体的TCP通讯示例应用,从界面设计到功能实现的全过程,并讨论了常见问题及其解决方案。; 适合人群:具备一定编程基础,尤其是对网络编程和HarmonyOS开发感兴趣的开发者。; 使用场景及目标:①了解TCP协议的工作原理及其与UDP的区别;②掌握HarmonyOS开发环境的搭建和网络权限的申请;③学习TCP客户端的开发流程,包括创建项目、编写核心代码和实现消息收发功能;④解决开发过程中常见的连接失败和数据收发异常问题。; 其他说明:本文不仅提供了详细的理论知识,还通过实际案例帮助读者更好地理解和掌握TCP客户端开发的技术要点。对于希望深入了解HarmonyOS网络开发的开发者来说,本文是一份非常有价值的参考资料。
踏入智慧校园的新时代,一场科技与教育的深度融合正在悄然上演。本方案以大数据、云计算、AI等前沿技术为基石,为校园管理带来前所未有的变革与便捷。 一、一键智控,校园管理轻松升级 想象一下,只需轻点手机,就能实现校园的全面智控。从教学教务到行政后勤,从师生考勤到校园安全,智慧校园解决方案一网打尽。通过构建统一的数据中台,实现各系统间的无缝对接与数据共享,让繁琐的管理工作变得轻松高效。智能排课、自动考勤、在线审批……一系列智能应用让校园管理如虎添翼,让校长和老师们从繁琐的事务中解放出来,专注于教学创新与质量提升。 二、寓教于乐,学习生活趣味无穷 智慧校园不仅让管理变得更简单,更让学习生活变得趣味无穷。AI赋能的教学系统能根据学生的学习习惯和能力,提供个性化的学习路径与资源推荐,让学习变得更加高效有趣。同时,丰富的课外活动与社团管理模块,让孩子们的课余生活也充满了欢声笑语。从智慧班牌到智能录播,从家校共育到虚拟实验室,智慧校园让每一个角落都充满了探索的乐趣与知识的光芒。 三、安全守护,校园生活无忧无虑 在智慧校园的守护下,校园生活变得更加安全无忧。通过高清视频监控、智能预警系统与人脸识别技术,校园安全得到了全方位保障。无论是外来人员的入侵还是学生的异常行为,都能被及时发现并处理。同时,智能化的健康管理系统还能实时监测师生的健康状况,为校园防疫工作提供有力支持。智慧校园,用科技的力量为每一位师生筑起了一道坚实的安全防线,让校园生活更加安心、舒心。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值