学习周记 Week 15

本周学习了微信小程序的开发,包括实现点击标签切换界面的功能,通过添加.js文件代码实现;使用滚动选择器,并处理bindPickerChange事件;以及在.js和.wxml文件中添加代码,实时显示输入文字的剩余字数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.学习目标

微信小程序初步开发

2.学习内容

2.1 点击标签切换界面

在.js文件中添加代码1

(property) data: {
more_list: never[];
position: number[];
nothing: boolean;
showtab: number;
showtabtype: string;
tabnav: {};
testdataall: never[];
testdata1: never[];
testdata2: never[];
testdata3: never[];
testdata4: never[];
... 4 more ...;
marginleft: number;
} & {
...;
}

在.js文件中添加代码2:

 this.setData({
      tabnav:{
        tabnum:5,
        tabitem:[
          {
            "id":1,
            "type":"A",
            "text":"文二"
          },
          {
            "id":2,
            "type":"B",
            "text":"文三"
          },
          {
            "id":3,
            "type":"C",
            "text":"工二"
          },
          {
            "id":4,
            "type":"D",
            "text":"食堂"
          },
          {
            "id":5,
            "type":"E",
            "text":"操场"
          },
        ] }
        })
        this.fetchTabData(0);

成果:
在这里插入图片描述
在这里插入图片描述

2.2 滚动选择器

bindPickerChange
成果:
在这里插入图片描述

2.3 剩余输入字数

在.js文件中添加代码

textChange(e) {
    const rest_num = 200 - e.detail.value.length;
    this.setData({
      text_form: e.detail.value,
      rest_num: rest_num
    });
  },

·在.wxml文件中添加代码

<span class='tips'>最多输入200字,您还可输入{{rest_num}}</span>

成果:
在这里插入图片描述

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值