自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 通过多教师对抗蒸馏提高准确性和稳健性

以往的对抗性蒸馏方法仅带来了经过对抗性训练训练的单一模型,其鲁棒性较强,但对于干净图像的识别能力较弱。作为唯一的指导,学生模型通常符合教师模型的分布,导致识别干净示例的能力较低。因此,我们还引入了一个预先训练的干净教师模型来指导对抗性蒸馏的过程。人们提出了许多通过知识蒸馏将大模型的鲁棒性转移到小模型的方法。虽然这些方法可以提高小模型的鲁棒性,但对抗性训练本身会损害模型识别干净样本的能力。因此,本文要解决的核心问题是如何提高对抗训练中的干净精度和鲁棒精度,然后提出了我们的多教师对抗鲁棒性蒸馏。

2024-07-10 16:14:20 307

原创 蒸馏作为对抗深度神经网络对抗性扰动的防御

精心设计的输入是为了迫使深度神经网络(DNN)提供对手选择的输出。此类攻击可能会严重破坏 DNN 支持的系统的安全性,有时会带来毁灭性的后果。例如,自动驾驶车辆可能会崩溃,非法或非法内容可能会绕过内容过滤器,或者生物识别系统可能会被操纵以允许不当访问。在这项工作中,我们引入了一种称为防御蒸馏的防御机制,以降低 DNN 上对抗性样本的有效性。我们分析研究了在训练 DNN 时使用防御蒸馏所赋予的通用性和稳健性。我们还实证研究了我们的防御机制在对抗环境中的两个 DNN 上的有效性。

2024-07-09 23:15:37 528

原创 (论文阅读)检测和防御:学生-教师网络的对抗健壮性

传统的防御方法不能区分对抗性例子(AE)和正常例子(NE)。因此,它们对两个示例应用相同的防御过程来执行分类,导致网元的性能下降。在本文中,我们提出了一种新的基于学生-教师框架的防御方法,该方法可以通过检测网络环境并将防御过程仅应用于网络环境来最小化网络环境的分类性能降级。针对教师网络(目标DNN)隐含层特征失真是敌意攻击成功的必然性这一事实,训练学生网络预测教师网络未失真的隐含层特征。

2024-07-09 16:28:03 900

原创 基于剪枝技术和鲁棒蒸馏融合的轻量对抗攻击防御方法

传统剪枝策略一般分为两类:预定义剪枝策略、基于全局阈值的剪枝策略。首先,预定义剪枝策略通常依赖于人工设定的剪枝率,但往往达不到最优的剪枝效果。其次,基于全局阈值的剪枝策略在使用中具有一定的局限性,如该方法会造成层崩塌,即该层的卷积核几乎被剪完,从而使模型性能骤降。针对以上问题,本文提出一种分层自适应的剪枝策略,其创新点在于依据模型各层输出的软标签信息与模型最终的软标签输出进行比较,进而指导各层剪枝率的分配(如图 1 所示),使网络结构能够适应鲁棒性的需要。

2024-07-08 16:44:50 334

原创 深度学习对抗防御

当前对于对抗样本的防御,主要从3个方向进行研究:(1)数据预处理,如在DNN模型学习过程中调整训练过程或者修改输入的训练样本;(2)修改网络模型,如添加更多层或子网络、改变损失或激活函数等,从而增强DNN模型的鲁棒性;(3)附加网络,如使用外部模型作为附加网络,来检测分类器未见过的对抗样本。

2024-07-08 10:39:53 283

原创 YOLOv9环境配置

受网络影响报错时用以下命令。

2024-05-24 23:28:33 120

原创 yolov8环境配置

首先ananconda创建虚拟环境,python版本最好大于3.8。以下主要是使用dyhead必定需要安装的包。再配gpu版本的torch。

2024-03-16 10:43:46 537 1

原创 pytorch安装GPU版本的torch,torchvision

如何安装GPU版本的pytorch

2024-03-13 15:27:35 1174 1

原创 目标检测入门(三)程序文件目录详解

前面几节了解了目标检测的一些基础概念之后就可以着手跑程序了,至于环境的配置某站一大堆教程,这里重点推荐up主我是土堆,而且还有一个yolov5的实战教程,非常适合新手了。经过几天的调试终于把程序跑出来了,看着密密麻麻的工程文件夹一时头大,接下来几天要把各个配置文件和代码读懂。

2023-10-13 23:37:09 489

原创 目标检测入门(二)衡量检测的好坏

和学习一样,经过训练之后的网络也有好坏之分,今天总结几个衡量学习成果的好坏先来了解一下混淆矩阵的概念,如上图所示。TP表示预测为正向(比如确定cat类),实际为True,其他类推。

2023-10-10 15:03:47 76 1

原创 目标检测入门(一)检测目标是干啥的?

视觉四个任务可以分为以上四种:分类(识别类cat),定位(识别类cat的基础之上定位框出来),目标检测(多个类的识别),实类分割用输入和输出概括目标检测是干啥的:输入:图片输出:要预测一系列的Bounding Box(框)的坐标以及 Label(类别)

2023-10-10 13:08:08 114 1

原创 模拟电子技术复试day2

模拟电子技术复试day2

2023-03-05 16:04:55 264

原创 模拟电子技术复试day1

模拟电子技术知识摘要

2023-02-27 15:48:56 293

原创 c语言输出对齐的方法

关于c语言输出左对齐和右对齐的方法

2023-02-13 21:12:26 11425 1

原创 FDTD Lumerical多个工程的排队计算

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar

2022-04-30 19:05:38 1241 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除