深度学习,作为机器学习的一个重要分支,近年来在人工智能领域引领了技术革命。无论是自动驾驶、医疗图像分析,还是自然语言处理,深度学习都扮演着不可或缺的角色。如果你刚刚接触深度学习,这篇文章将从基础原理、常用模型到代码实现,帮助你轻松入门。
目录
1. 深度学习的概念
1.1 什么是深度学习?
深度学习是基于神经网络的学习方法,模型通过多层神经元(或称为层)逐层提取数据特征。在传统机器学习中,特征提取依赖于人工,而深度学习通过层层的特征学习,能够自动发现隐藏在数据中的复杂模式。
1.2 深度学习的历史
深度学习的概念最早可追溯到上世纪60年代的感知机,但在神经网络算法和硬件性能的飞跃下,2012年AlexNet在ImageNet竞赛中的成功使深度学习迎来了新的爆发。
2. 深度学习的基本架构
深度学习最基础的架构是多层感知机(MLP),它是由多层全连接神经元组成的网络。每一层的神经元与下一层的神经元相连,形成网络结构。