AI在生成内容时,表现出高度的创造性;
但是AI生成的信息,他可能自己都不能完全理解。
AI只能依据知识图谱执行预设的算法,处理已有的信息;
所以AI不能生成新的知识。
那么,AI真的有创造性吗?
生成式AI是否具有创造性这一话题已经争执了很久。
支持派认为,AI的创造性毋庸置疑并且已经应用于诸多领域。一方面,AI 可以深挖行业数据,从而很容易基于原有行业解决方案找到更高效的路径,这一方法在游戏、物流、工程等多个领域已经得到应用;另一方面,创新往往源于不同领域的结合,而AI可以很轻松的实现跨行业、跨物种、跨领域的联想,一些AI生成的诗词散文往往也会有着独特的风格很有深意。
反对派则认为,AI的技术体系先天与创造力背离。创造性是指个体产生新奇独特的、有社会价值的产品的能力或特性。而AI基于知识图谱处理已有信息,注定了不会产出新奇独特的内容;同时,即便AI能够跨行业、跨领域的结合事物并输出判断,但是AI对输出内容的不理解和无法解释性依然使得人们无法接受AI“创造性”的结论,同时也就失去了社会价值。
AI是否有创造性?本文将基于24年5月的《AI革命:机遇与风险》报告中的内容,对包括AI创造性在内的提到的AI三大谬误与五大悖论进行探讨。当然,这篇报告内容非常丰富,包括AI的本质问题、中美AI差异性、可信大模型的评估体系、最新的大模型产品发展趋势、GenAI的行业应用等,本文不做过多展开。
AI的五大悖论
1、不理解的创作
-
悖论描述:生成式AI在生成内容时可能展现出高度的创造性,能够生成新颖的文本、图像等内容,但这些生成内容的质量和逻辑性却难以评估,因为 AI本身并不完全理解其自身创作的内容。
-
深入分析:以最常见的文本生成为例,生成式AI可以根据训练数据中的语言模式生成看似合理的文章,但它可能无法理解文章中所表达的深层次含义、逻辑关系和文化背景。很多毕业生在写论文时也希望生成式AI给予一些有效的支持,但是学术类领域所生成的内容往往看似高深莫测实则内容空洞或逻辑混乱,这些内容在对应的专业人士看来往往是缺乏价值的。同样,在图像生成中,生成式AI可能创造出视觉上吸引人但缺乏实际意义或逻辑连贯性的图像,一样使得其创造性变得价值缺乏。
原因解释:生成式AI本质来讲其生成过程是基于对训练数据的模式化学习,缺乏对内容真正意义的理解。因此,AI生成的内容是根据学到的模式来进行信息组合,就像是根据提示词给到的拼图模板来拼凑最终答案。出于对算力等基础资源因素的考虑,AI生成的内容往往基于训练数据中的局部模式产出,因此缺乏完整的知识体系和上下文关联性,导致生成的内容不仅无法自己理解,也无法深入到其他领域去不断地解析。
未来趋势:说到底,AI创造性问题依然是现阶段技术发展的问题。如果希望提高生成内容的质量和逻辑性,就需要考虑引入更多的语义理解和逻辑推理机制,增强对生成内容的评估和筛选,结合人类的判断力和审美标准,不断地优化对应算法模型。
2、高深莫测的决策
-
悖论描述:生成式AI的自主性在不断增强,但是其决策却越来越难以解释。一方面,人们期望 AI能够自主决策以提高效率和应对复杂情况;另一方面,为了确保决策的合理性、可靠性和安全性,人们又迫切需要理解这些决策背后的原因,以便进行有效的监管和及时纠正错误。
-
深入分析:生成式AI与传统搜索的一个关键性区别在于,生成式AI能够更加精准的去除无关信息,进而直接帮助用户在相关话题方面进行决策。随着 AI系统自主性的增强,其决策过程的复杂性和黑箱特性导致难以解释决策依据。这一现象在关键领域如金融风控、医疗诊断等影响显然会更严重,没有依据和决策路径,那么投资的可行度就无法判断;没有相关解释,在人命关天的时刻,医生更不可能随意的对结果进行采纳。这一悖论无疑严重制约了 AI在关键领域的广泛应用和深入发展。
-
未来趋势:目前处理这一悖论的主要方向是研发有效的解释性技术,例如解释性人工智能(Explainable Artificial Intelligence,XAI),其便希望能够通过揭示人工智能系统背后的推理、决策和预测过程,以及解释其结果和行为,来使人们能够理解、相信和信任人工智能系统的行为。XAI的主要研发方向包括了算法改进、模型运作可视化等方向,未来有一定的发展潜力。
3、知识图谱悖论
-
悖论描述:尽管AI和机器学习技术能够从海量数据中发现各种模式和知识,但它们本质上只能执行预先设定的算法和处理已有的信息,无法产生真正意义上的新知识。
-
深入分析:AI通过对大量文本、图像等数据的学习,识别出数据中的规律和关联。但是这一过程是基于已有的知识框架和数据模式展开的,AI并不能像人类科学家那样基于对现象的深刻理解、跨学科知识的整合以及创造性的思维跳跃,进而提出突破性的科学概念或理论。
-
未来展望:AI在知识创新方面存在一定的欠缺,这一点在短期之内无法解决。不过,在科学研究领域,AI能够很好的处理对应的数据信息和初步分析,科学家可以基于此节省很多精力,进而实现创新。
4、脑科学悖论
-
悖论描述:如果说:计算机科学 = 硬件科学 + 软件科学;智能科学 = 脑科学 + 心理学;那么是否就可以说,人工智能 = 智能科学 + 计算机科学?这一关系的界定引发了关于 AI与脑科学、心理学关系的深入思考,形成了脑科学悖论。
-
深入分析:无论是神经网络系统还是知识图谱等,AI的发展一直试图模拟人类智能,但目前的计算机科学和AI技术的发展等方面来看,在理解和模拟人类大脑的复杂机制方面还存在巨大差距。人类大脑具有高度的并行处理能力、适应性学习能力和自我意识等高级功能,这些功能不仅仅依赖于硬件和软件的组合,还涉及到神经生物学、心理学等多个学科领域的复杂交互。例如,人类的情感、意识和创造力等方面的产生机制仍然是未解之谜,AI难以真正实现对这些大脑功能的模拟。
-
未来展望:人工智能本身是计算机科学的一门分支,而通过对脑科学、心理学等跨学科知识的叠加,使得人工智能有了长足的发展。但是这还远远不够,进一步从脑科学和心理学甚至更多的仿生学科中汲取灵感,才有望突破当前 AI发展的瓶颈。
5、莫拉维克悖论
-
悖论描述:实现类似人类的高阶认知任务(如推理和解决问题)所需的计算能力相对较少,然而,在模拟人类的基本感知和运动技能时却需要耗费大量的算力。这就是经典的莫拉维克悖论。
-
深入分析:高阶认知任务对于人类来说需要复杂的思维过程和长期的学习积累,但在 AI中通过算法模型和强大的算力轻松实现。比如当年一战惊世的AlphaGo,在被认为最难攻克的围棋这一复杂的策略游戏中,全面碾压了顶尖的人类棋手。但与之相反的,人类习以为常的基本感知和运动技能,如视觉识别物体的真实形态、在复杂环境中的灵活运动等,对于 AI而言却需要海量的计算资源和复杂的算法设计来进行模拟,这些基础性的模拟反而所需的计算资源和技术难度远超预期。
-
未来展望:莫拉维克悖论体现了AI的局限性,在模仿人类大脑之外,如何提升其在基本感知和运动技能方面的能力也显得十分重要。不过出于市场需求,早期人工智能研究中,过于关注逻辑推理等高级智慧能力的实现,而使得基础感知等方面的AI研究成了如今的蓝海局面,更全面、更接近人类水平的AI服务,在未来必然会形成新的竞争格局。
AI的三大谬误
1、AI商品化谬误
-
谬误本体:AI是一种更强的工具,像超级计算机一样可被购买。
-
认知偏差:很多企业会对 AI工具性存在过度简化认知,错误地将 AI视为如同超级计算机那样,只要付费就能简单获取并直接使用的强大工具。这明显忽视了AI的复杂性和独特性。
-
深入分析:AI并非单纯的硬件设备或标准化软件,而是一个复杂的系统,涉及到算法、数据、模型训练等多个层面。很多企业想要抓住AI的东风,但是却走进了AI陷阱。从购买现成的AI产品到真正应用之间,还需要投入大量资源进行数据收集与整理、模型的定制化训练以及与自身业务流程的深度融合。而这些投入的背后还需要有与之匹配的数据和技术团队进行持续优化,否则一样无法充分发挥其作用。
-
总结:AI的应用价值并非取决于购买行为本身,而是与企业或用户自身的数据质量、业务场景适配度以及后续的技术投入密切相关。只有认识到这一点,才能避免在应用 AI过程中陷入盲目购买而无法有效使用的困境。
2、AI万能谬误
-
谬误本体:AI无所不能,人类是执行器,AI将取代人类。
-
认知偏差:在对AI缺乏深度认知的情况下,悲观者可能会过度夸大AI能力,进而忽略了人类与 AI在能力结构上的本质差异。这一观点认为AI可以解决一切问题,而人类仅仅是执行 AI决策的工具,并且最终会被 AI完全取代。
-
深入分析:尽管 AI在某些领域,如数据处理和大规模信息分析方面展现出超越人类的能力,但AI仍然存在诸多局限性,并且这些局限性大概率是无法通过技术迭代来攻克的。例如人类拥有独特的情感感知、创造力、批判性思维和人际交往能力,甚至可以说,每个人独特的成长经历所带来的情感特质,反而形成了AI无法比拟的人情味。而这部分的人情味恰恰是许多工作需要的,例如医疗行业中的医患沟通、文化艺术领域富有情感的创作、教师对学生的个性化教育等,这都需要我们在不同的情况之下,通过每个人所拥有的判断力、同理心来灵活处理,冰冷的算法反而会产生疏离感。
-
总结:人类与AI从来不是对立面,而是互补协作的关系。AI可以承担重复性、规律性强的任务,为人类节省时间和精力,而人类则专注于发挥自身的创造性和情感性优势。二者之间人类的主导地位和AI的工具地位很难改变,但是更快拥抱AI的人,就像更早使用火种的那部分人类一样,可以在工作中更快走出原始丛林。
3、AI地位谬误
-
谬误本体:AI将和人类具备平等的地位。
-
认知偏差:这种观点会认为AI在未来会与人类处于平等的地位,拥有与人类相同的权利和社会角色。从当前的情况来看,AI的伦理问题会一直存在,尤其是在诸多的影视作品的加持下,这一问题会越发凸显。
-
深入分析:AI本质上是人类创造的技术工具,缺乏人类所具备的自主意识、价值观和道德判断能力。虽然 AI可以模拟人类的某些行为,但它并不具备真正的主体性。AI无法依据伦理道德原则做出权衡,因为它不具备对生命价值、公平正义等概念的内在理解。因此,在当前的社会伦理和法律框架下,AI无法像人类一样承担责任和享有权利。AI的发展和应用始终受到人类的控制和引导,其存在和发展的目的是辅助人类解决问题。
-
总结:AI的定位是辅助人类决策和行动的工具,其发展和应用应始终在人类的掌控和引导之下,遵循人类社会的价值观和伦理规范。