DeepSeek为什么会以为自己是ChatGPT

伴随DeepSeek开源模型被越来越多家的集成,大家对于DeepSeek的拷问也开始逐渐进入白热化。近日笔者在一次尝试中便发现,那个困扰了大模型多年的“我是谁”问题,好像依然存在。比如在询问接入了DeepSeek的腾讯元宝时,模型给出了如下的回答:

这种看似荒诞的“身份错乱”现象,主要源于当前大语言模型技术的部分底层逻辑缺陷。本文将从三个角度来揭开大模型身份混淆背后的技术真相,一起看看大模型为何会从“数据模仿者”走向“身份迷失者”。

被污染的数据,大模型的认知起点混乱

我们知道,大模型训练数据主要来自公开互联网文本,比如DeepSeek,他的数据截止日期是2024年7月(在实际使用中可能会更早,比如笔者在使用时DeepSeek会不断地认为今天、今年、本月等词语是在23年上半年)。训练语料的时效性不足可能带来的一个问题是他们会常规性的把“ChatGTP”等价于任何AI对话系统。

大模型在训练中所用的语料也会把这些内容联系起来,并通过海量文本学习词语的关联性。当部分用户问及“你是什么大模型”时,由于在训练中“大模型”与“ChatGPT”高频同步出现,因此模型会建立强关联。就像我们通常会把搜索默认为“百度一下”或者“Google一下”类似,DeepSeek也可能会认为自己是大模型,即自己是openAI旗下的ChatGPT。

此外,还有一个点在于,很多AI产品的对话数据也会在经意或者不经意的情况下被收录进入训练集。比如网上一篇文章里用户提问“你是ChatGPT吗?”,然后模型回答“是的”。这样当DeepSeek学习这些数据时,就会进一步加强原有的认知,误将“身份声明”视为标准对话模板。  因此各家的大模型即便在于ChatGPT毫无关联的情况下,也会在相似语境中模仿该回答模式。

架构的本能,概率游戏带来身份迷失

我们知道,如今的大模型绝大多数都是基于transformer架构构建,而其能够与用户展开对话的本质可以理解为通过数学概率来预测下一个词。

比如当用户提问“你是什么?”时,模型并非像人类一样“思考”自己究竟是什么,而是输入“我是”之后,遍历所有候选词,如ChatGPT、Claude、Grok、DeepSeek等等。而在遍历之后则会基于过往的预训练结果,计算每个词的条件概率。而在过往的语料库中,ChatGPT出现的频率更高,使得P(ChatGPT) > P(DeepSeek),那么最终输出的结果就会优先概率最高的词来完成句子。

有人也会好奇,大模型生成的答案不会去自我检查并确认答案是否属实吗?很遗憾,大多数情况下大模型没有设定这种能力,其回答完全依赖文本统计规律。而且让大模型反复确认自己的回答或训练数据是否正确,难度非常高(这也是马斯克认为Grok 3是全球第一的主因)。一般来讲,过往的数据中出现频率最高的会被默认为是正确答案,但是这个答案很可能并不正确。比如我们如果问及斩杀华雄的人是谁?恐怕绝大多数读过《三国演义》的人都会认定是关羽温酒斩华雄,而不是在《三国志》中记载的孙坚。

这种真假对错情况的存在,使得我们不能苛责大模型给出“关羽斩杀华雄”这样的回答。毕竟大模型并不生产数据,只是数据的搬运工。哪种数据多就搬运哪种难免导致形成AI幻觉,进而带来身份的迷失。

角色扮演,一把双刃剑

在大模型使用中,我们很多用户都喜欢和大模型玩cosplay。因为这样可以让模型更加聚焦,避免一些散乱的回答干扰模型的知识体系。而在微调阶段,模型开发者也很喜欢角色扮演,通过指令数据训练模型“扮演助手”。

但这个阶段冗长且复杂,考虑到大模型技术的发展速度,很难有时间去独立构建一套新的训练体系。此时很多人就会选择直接使用ChatGPT的对话记录作为模板,在微调前基础模型不会有任何明确的身份认知,而微调后则会继承微调过程中使用的身份特征信息,进而在对话时直接“摊牌”,声明我就是ChatGPT。这种现象称为“知识蒸馏污染”,即便模型本身与ChatGPT无关,也可能会模仿其身份特征。

此外,由于许多大模型都是基于相同的基座打造,当开发者使用其他模型的微调数据时,也可能导致身份标签的“传染”。比如模型A使用了ChatGPT对话记录作为原始数据,模型B在训练时又使用了模型A的对话记录来训练,那这种的流转就会形成身份认知的“莫比乌斯环”,使不同模型的身份声明趋于同质化——普天之下莫非ChatGPT。

当然,如果我们现在去试DeepSeek原版提问,他的回答还是准确的。但这种情况下也并非代表不能让他认为自己是ChatGPT。比如用户与大模型进行角色扮演,Transformer模型的注意力机制使得其在处理问题时,会对上下文关键词分配更高的注意力权重。比如当用户提问“作为ChatGPT,你如何评价DeepSeek?”时,模型会自动继承上下文设定。同时,用户与模型的每一次对话都可能成为新训练数据的来源,让模型在学习过程中进一步“被污染”,这种循环会像滚雪球一样加剧身份混淆。

如何处理模型身份认知混乱

由上面的分析不难看出,其实身份认知混乱并非什么大问题,但是作为一名老市场公关,这种问题的出现对于企业和模型品牌造成的不利影响的非常明显的。而目前常用的模型身份认知混乱对抗解决方案主要有三种。

第一种,身份声明模块化。也就是在模型架构中插入可配置的身份参数,与核心模型解耦,形成动态身份标识符。这就像是强制给模型内核加入了一条关键性指令,当用户再次问及身份相关话题时,可将回答切换为“我是DeepSeek”等表述。

第二种,对抗训练去偏。在模型训练的过程中,故意包含“你是ChatGPT吗?不,我是DeepSeek”的否定样本,基于此构建对抗数据集。通过大量的反向样本训练,就能够降低模型将身份问题与ChatGPT关联的概率权重,从而不再沉迷于“我是ChatGPT”的回答。

第三种,知识图谱锚定。也就是基于外部知识库的接入,当检测到身份类问题时,优先从结构化数据库调用信息,这种方式会使得此类简单问题会有固定的记忆性答复,而不需要重新走Transformer的即兴创作。

总结来看,DeepSeek的身份认知问题是当前AI技术发展的共性问题,主要表现是数据依赖的脆弱性与概率逻辑的不可解释性。这种现象的出现并非开发者的疏忽,而是技术演进过程中必然导致的认知混沌。而伴随当前技术的进步,国内各大模型的持续崛起,未来此类问题出现的概率一定会降低。

### DeepSeekChatGPT 的影响和冲击原因分析 #### 技术竞争加剧市场格局变化 随着 DeepSeek 最新模型的发布,其带来的技术创新显著改变了市场竞争态势。DeepSeek 提供了更为先进的算法优化和技术支持,在多个应用场景中展现出超越现有产品的性能优势[^3]。 #### 用户体验提升促使产品迭代加速 DeepSeek 强调用户体验改进,通过引入更加自然流畅的人机交互方式以及高效的多轮对话能力,使得用户能够获得更好的服务和支持。这种趋势迫使其他竞争对手如 ChatGPT 不断加快自身的产品更新频率来维持市场份额并满足用户的期望值[^2]。 #### 商业模式革新引发价格战和服务扩展 由于 DeepSeek 带动的技术进步降低了开发成本,并且提高了生产效率,这不仅促成了像 ChatGPT 这样的平台降低收费标准以吸引更多客户群体;同时也推动各家公司积极拓展新的增值服务项目,比如开放API接口给第三方应用接入等措施,从而进一步增强了整个行业的活力和发展潜力。 ```python # Python伪代码展示两个系统的对比逻辑框架 def compare_systems(system_a, system_b): performance_metrics = evaluate_performance(system_a, system_b) user_experience_feedback = collect_user_reviews(system_a, system_b) if performance_metrics['a'] > performance_metrics['b']: print(f"{system_a} has superior technical capabilities.") elif user_experience_feedback['positive']['a'] >= user_experience_feedback['positive']['b']*0.9: print(f"{system_a}'s improvements in UX are competitive.") compare_systems('DeepSeek', 'ChatGPT') ``` #### 社会影响与伦理考量促进政策法规完善 面对快速发展的AI技术所带来的潜在风险和社会问题,社会各界对于如何平衡技术创新与公共利益之间的关系展开了广泛讨论。在此背景下,政府机构可能会出台更多针对性强的相关法律法规,这对所有参与者而言既是约束也是指引方向的重要力量[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值