Leetcode Java学习记录——动态规划基础_3

最大子序列和(最大子数组和)

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

思路

  1. 暴力: n^2
  2. DP:
    1. 分治(子问题)max_sum(i) = Max(max_sum(i-1), 0) + a[i]
    2. 状态数组定义 f[i]
    3. DP方程 f[i] = Max(f[i-1] , 0) + a[i]

题解

第一步按照上述步骤写出dp解法:

class Solution {
    public int maxSubArray(int[] nums) {
        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        for(int i = 1; i<nums.length ; i++){
            if(dp[i-1] < 0){
                dp[i] = nums[i];
            }else{
                dp[i] = dp[i-1] + nums[i];
            }
        }
        // 返回dp数组中的最大值
        for(int dpElement : dp){
            if(dp[0]<dpElement){
                dp[0] = dpElement;
            }
        }
        return dp[0];
    }
}

可以优化,dp数组其实可以用nums本身替换,省去额外空间。

    public static int maxSubArrayDP2(int[] nums) {

        for(int i = 1; i<nums.length ; i++){
            if(nums[i-1] > 0){
                nums[i] = nums[i-1] + nums[i];
            }
        }
        // 返回dp数组中的最大值
        for(int dpElement : nums){
            if(nums[0]<dpElement){
                nums[0] = dpElement;
            }
        }
        return nums[0];
    }

或者直接用一个int

public int maxSubArray(int[] nums) {
        // int res = 0;
        // int sum = nums[0];
        // 初始值别搞错了
        int res = nums[0];
        int sum = 0;
        for(int num :nums){
            if(sum<0){
                sum = num;
            }else{
                sum += num;
            }
            res = Math.max(sum,res);
        }
        return res;
    }

零钱兑换 coin change

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

思路

类似爬楼梯问题

  1. 暴力法 —— 递归-指数级
  2. BFS —— 递归状态树,广度优先遍历
  3. DP

题解

class Solution {
    public int coinChange(int[] coins, int amount) {
        //分治子问题

        //dp数组
        int max = amount+1;
        int[] dp = new int[max];
        Arrays.fill(dp,max);//因为要用min获取新值,就设置max为初始值
        dp[0]=0;//注意设置dp0
        //dp方程
        for(int i=1;i<=amount;i++){
            for(int j = 0; j<coins.length; j++){
                if(coins[j] <= i){//注意条件
                    dp[i] = Math.min(dp[i] , dp[i-coins[j]] + 1);
                }
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];

    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值