深度学习PyTorch
文章平均质量分 91
PyTorch框架基础、项目实施过程、以及学习过程中的问题解决办法的分享
HUI 别摸鱼了
博观而约取,厚积而薄发。
展开
-
【nnUNet v2—修改网络】——马上更新
中建立自己的网络模型,也可以复制别人的模型,在其基础上修改为自己的模型。复制一份,重新命名为自己的训练器。原创 2024-10-25 21:24:02 · 247 阅读 · 0 评论 -
【wandb设置】
进入wandb网址,登陆你的账号。终端再次运行训练程序即可。原创 2024-05-17 23:43:46 · 1132 阅读 · 0 评论 -
【训练时间(Training runtime)、参数量(Params)、计算量(FLOPs)】
输入input的批量(batch size),批量的大小不会影响参数量,但是会影响计算量, 计算量是batch_size=1的倍数;图像的尺寸也会影响计算量;profile(MODEL, (input,))的 (input,)中必须加上逗号,否则会报错。原创 2024-05-13 17:08:58 · 480 阅读 · 0 评论 -
【程序错误-梯度计算错误】RuntimeError: one of the variables needed for gradient computation has been modified by
PyTorch默认会跟踪张量的操作历史,以便计算梯度,但是原地操作会破坏操作历史,导致无法计算梯度。在计算梯度的时候检查出某个Variable有被一个 inplace operation 修改。报错信息会更加具体提示是网络那部分梯度计算出现问题。原创 2024-04-29 22:47:28 · 3899 阅读 · 0 评论 -
【程序错误-显存不足】RuntimeError: CUDA out of memory. Tried to allocate 4.00 GiB
使用更低精度的数据类型:将模型参数和激活值从32位浮点数(float32)转换为16位浮点数(float16),可以减少显存的使用。减少每次训练或推理时的批次大小,以降低显存的需求。较小的批次大小可能会增加训练时间,但可以减少显存压力。如果你使用的是大型模型,可以尝试减少模型的大小,以减少显存使用量。如果你有多个GPU可用,可以尝试使用多卡训练。这样可以将模型的不同部分分配到不同的GPU上,从而减少单个GPU上的显存需求。在报错的哪一行代码的上面,加上下面两行代码,释放无关的内存。原创 2024-04-29 22:19:32 · 1688 阅读 · 0 评论 -
【VS Code安装及远程服务器】(未完待续)
这个错误是由于 PowerShell 执行策略限制导致的。在 Windows 上,默认情况下,PowerShell 的执行策略是 Restricted,不允许运行脚本。为了解决这个问题,你可以选择修改 PowerShell 的执行策略或者使用其他方法激活虚拟环境。双击 Icon -> 输入地址格式如下:(找到你自己安装VS Code的Code.exe的路径)此操作在C盘或是D盘下执行都可以,我们的python是安装在D盘下的。打开注册表:win + R,然后输入regedit,确定;原创 2024-04-29 20:35:24 · 1667 阅读 · 0 评论 -
【复现代码——环境配置】
目前解决的问题是用 PyTorch 1.7.0,Pytorch 1.10.1 也可以。使用label=torch.argmax(label, dim=1) ,其中dim=1表示通道维度,亲测有效!以上的环境是必须要按照作者要求的安装,如果换其他的版本,就可能会出错。这里可选择conda安装,也可以pip安装,我一般选择pip 安装,conda 安装有时候不成功。安装PyTorch必须找到对应的cuda,所以先查看自己的服务器CUDA。以上,安装完代码需要的所有依赖,就可以训练或是测试了。原创 2024-04-23 22:45:33 · 1709 阅读 · 1 评论 -
【医学图像多分类分割步骤】(未完待续)
图像分类:应用于图像级分类,在全连接层后接softmax得到分类概率,常用CNN;图像分割:应用于像素级分类,softmax应用于特征通道方向,上采样后对每个像素进行像素级的分类,常用FCN等;目标检测(object detection):给定一幅图像,只需要找到一类目标所在的矩形框;目标识别(object recognition):将需要识别的目标,和数据库中的某个样例对应起来,完成识别功能。图片来源于一文读懂图像分类、目标定位、语义分割与实例分割的区别。原创 2023-10-05 10:34:59 · 388 阅读 · 0 评论 -
【多卡运行】(未完待续)
在带有多GPU的机器上运行代码,只要在原始单GPU代码中模型定义完成后面,添加以下代码即可,这样会默认在所有的GPU上进行训练,特别注意:若banchsize=30,则在单GPU上是30个样本一组进行训练,在2个GPU上并行训练,则是每个GPU上15个样本,以此类推。所以可以考虑增加banchsize的值,即设置为30*GPU个数。原创 2024-04-22 10:24:31 · 454 阅读 · 0 评论 -
【代码上传GitHub】(未完待续)
read me。原创 2024-04-19 17:35:31 · 936 阅读 · 0 评论 -
nnUNet V2训练-AutoDL
nnUNet训练-AutoDL原创 2024-01-29 23:41:13 · 2054 阅读 · 0 评论 -
【模型术语及容易忽略的专业知识】
声明:为了方便自己查阅,所以粘贴、集合了其他博主的博客,具体参考原博文。原创 2023-09-23 22:01:44 · 57 阅读 · 0 评论 -
【AutoDL】服务器配置、Xftp数据传输及PyCharm连接
Bash (GNU Bourne-Again Shell) 是许多Linux发行版的默认Shell,是Bourne shell的后继兼容版本与开放源代码版本,它的名称来自Bourne shell(sh)的一个双关语(Bourne again / born again):Bourne-Again SHell。因此就可以将我们的程序放在screen的会话中执行,然后离开会话,等我们需要看日志时再恢复到这个会话中。之前的步骤都是无卡开机模式,而为了验证环境已经配置完成,需要关机,再直接开机,这次不是无卡开机。原创 2023-04-25 15:28:39 · 17541 阅读 · 25 评论 -
【ubuntu18.04】系统安装、查看Linux信息、Linux卡死、用户创建、快捷键、kill 进程
一些总结原创 2023-03-15 22:12:21 · 623 阅读 · 0 评论 -
【PyTorch框架】GPU的使用
GPU使用;多GPU运算原创 2023-04-18 16:10:33 · 7527 阅读 · 0 评论 -
【PyTorch框架】 迁移学习 & 模型微调
模型微调原创 2023-04-17 15:20:48 · 2747 阅读 · 0 评论 -
【PyTorch框架】模型保存、加载与断点续训练
模型保存,加载与断点续训练原创 2023-04-14 11:24:13 · 2088 阅读 · 0 评论