【wandb设置】

1. 安装wandb

  • 进入虚拟环境,终端输入:
pip install wandb

2. 登录

  • 终端输入:
wandb login

如果你之前登过,需要重新换账号:

wandb login --relogin
  • 进入wandb网址,登陆你的账号

  • 点击红框内,进入Home:
    在这里插入图片描述
    在这里插入图片描述

  • 复制你API key:
    在这里插入图片描述

  • 终端输入你的API key,回车:
    在这里插入图片描述

  • 终端再次运行训练程序即可。

3. Windows遇到的问题——在PyCharm的终端

  • 问题:
    在这里插入图片描述

  • 解决方法1:
    在环境变量添加wandb.exe(这个方法没用,但是还是做个记录):

    • 右键此电脑 -> 属性 -> 高级系统设置 -> 高级 -> 环境变量 -> 系统变量 -> 双击Path -> 新建 -> 填写wandb地址 C:\Users\DELL\AppData\Roaming\Python\Python38\Scripts\wandb.exe -> 依次点确定
    • 重新启动命令提示符(或PowerShell):为了使环境变量生效,需要关闭并重新打开命令提示符窗口或PowerShell窗口。
    • 参考: wandb 安装与使用
  • 解决方法2:

    • 输入python
      在这里插入图片描述
    • 输入import wandb
    • 输入wandb.login()
    • 换一个新账号,输入wandb.login(relogin=True)
      在这里插入图片描述
    • 输入2,选择已存在的账号:
    • 输入Key值,回车
      在这里插入图片描述
    • 表明您已成功登录到您的WandB帐户,并且WandB已将API密钥添加到您的.netrc文件中,这样就可以访问WandB的API了。这意味着您可以使用WandB进行实验跟踪、项目管理和结果可视化等操作。

4. Jupyter notebook

!pip install wandb
wandb.login()
<think>好的,我现在需要帮助用户将LLaMA-Factory项目接入本地部署的Wandb进行实验跟踪和可视化。首先,我得回想一下用户的问题:他们想在LLaMA-Factory中使用本地的Wandb。根据用户提供的引用,特别是引用[1]和[3],我需要查看项目的安装和配置方式,以及配置文件的结构。 首先,用户需要安装Wandb的Python包。虽然用户已经安装了LLaMA-Factory及其依赖,但可能还没安装wandb。所以第一步应该是确保用户执行`pip install wandb`来安装必要的库。 接下来,用户需要在Wandb官网注册并获取API密钥。本地部署的话,可能需要先安装wandb本地服务器,但用户的问题可能更多是关于如何配置现有的本地Wandb,而不是自己搭建服务器。因此,重点应放在如何设置环境变量,让LLaMA-Factory连接到用户的Wandb账户。 然后,用户需要在命令行中登录Wandb,使用`wandb login`命令输入API密钥。这一步是关键,因为如果没有正确登录,实验数据无法上传到Wandb的仪表盘。 接下来是修改配置文件。查看用户提供的引用[3]中的示例配置,比如`llama3_lora_sft.yaml`,里面可能有一些与日志相关的参数。用户需要在该配置文件中添加或修改`report_to`字段为`wandb`,并可能设置`wandb_project`和`wandb_run_name`来指定项目名称和运行名称。例如: ```yaml report_to: wandb wandb_project: llama3-finetune wandb_run_name: lora-sft-experiment ``` 此外,用户可能需要通过环境变量或在训练命令中指定Wandb的参数。例如,在启动训练脚本时,传递`--report_to wandb`参数,或者在环境变量中设置`WANDB_PROJECT`和`WANDB_RUN_NAME`。 然后,用户启动训练脚本后,Wandb应该会自动记录训练过程中的指标,如损失、学习率等,并同步到本地或云端仪表盘,具体取决于用户的Wandb设置。 可能还需要提醒用户检查网络连接,确保本地环境可以访问Wandb的服务,或者如果用户使用的是本地部署的Wandb服务器,需要设置`WANDB_BASE_URL`环境变量指向本地地址。 另外,用户可能会遇到权限问题,比如API密钥错误,或者配置文件路径不正确。需要确保配置文件中的路径正确,并且权限设置允许脚本访问Wandb。 最后,验证配置是否成功,可以运行一个简单的训练任务,查看Wandb仪表盘是否有数据上传。如果没有,可能需要检查日志中的错误信息,确认是否缺少依赖或配置错误。</think>以下是LLaMA-Factory配置本地wandb的步骤指南: ### 第一步:安装wandb依赖 ```bash pip install wandb ``` 需要确保已安装wandb的Python SDK[^2] ### 第二步:设置环境变量 在启动训练前执行: ```bash export WANDB_API_KEY=your_api_key_here export WANDB_PROJECT=your_project_name ``` API key可在wandb官网个人设置中获取 ### 第三步:修改配置文件 在训练配置文件(如`llama3_lora_sft.yaml`)中添加: ```yaml report_to: wandb wandb_project: ${WANDB_PROJECT} # 使用环境变量或直接写项目名 wandb_run_name: "experiment_01" # 自定义实验名称 logging_steps: 10 # 日志记录频率 ``` 完整参数可参考wandb官方文档[^1] ### 第四步:启动训练 ```bash python src/train_bash.py --config examples/train_lora/llama3_lora_sft.yaml ``` 训练指标将实时同步到wandb仪表盘 ### 验证配置 成功连接后终端会显示: `Syncing run <run_name> to Weights & Biases (docs) at https://wandb.ai/...`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值