- 博客(20)
- 收藏
- 关注
原创 遗传算法(GA)
遗传算法(Genetic Algorithm, GA)是模拟生物在自然环境中的遗传和进化的过程而形成的自适应全局优化搜索算法。遗传算法借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种并行、高效、全局搜索的方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。遗传算法操作使用"适者生存”的原则,在潜在的解决方案种群中逐次产生一个近似最优的方案。在遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近似解。
2024-05-31 17:30:19 640
原创 最优化粒子群优化算法(PSO)
粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为PSO。粒子群优化算法是一种进化计算技术(evolutionary computation), 1995 年由Eberhart博士和kennedy博士提出,源于对鸟群捕食的行为研究。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在。
2024-05-30 19:08:45 1187
原创 手写一个RNN前向传播以及反向传播
ds_prev:表示当前cell的损失对上一个cell的输入的导数。ds_next:表示当前cell的损失对输出s的导数。dx_t:表示当前cell的损失对输入xt的导数。dtanh:表示当前cel的损失对激活函数的导数。dba:表示当前cell的损失对dba的导数。根据图我们能够知道需要计算的梯度变量有哪些。dU:表示当前cell的损失对U的导数。dW:表示当前cell的损失对W的导数。m = 3 词的个数 n = 5。
2024-04-27 19:45:32 427
原创 循环神经网络介绍(RNN)
Xt:表示每一时刻的输入Ot:表示每一时刻的输出St:表示每一个隐层的输出中间小圆圈代表隐藏层的一个单元(cell)U V W参数共享所有的cell每一个cell:有两个输入,前一个cell的状态和当前序列的输入每一个cell:有两个输出,当前cell的状态和cell的预测输出输出:受到前面时刻隐藏状态的影响g1,g2:表示激活函数 g1:tanh/relu g2:sigmoid softmax。
2024-04-25 17:15:35 1076 1
原创 卷积神经网络(CNN)对验证码图片识别案例
数据集下载链接:https://pan.baidu.com/s/1ypNNQkR1_ZK-_KO92x6Phw?pwd=6753提取码:6753图片1 -->NZPP 一个样本对应四个目标值使用one-hot编码转换第一个位置:[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]第二个位置:[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
2024-04-22 21:18:04 1056 1
原创 卷积神经网络CNN手写数字识别案例
变量initial value=random normal(shape=[F,F,3/1,K])变量initial value=random normal(shape=[F,F,3/1,K])卷积:32个filter、大小5*5、strides = 1、padding = "SAME"根据公式计算输出形状:[None,14,14,32]输入形状:[None,28,28,32][None,28,28,32] ----通道数变为32。[None,14,14,64] ----通道数变为64。
2024-04-21 17:01:50 1443 2
原创 卷积神经网络(CNN)基础
卷积神经网络与传统多层神经网络对比传统多层神经网络只是输入层、隐藏层、输出层,其中隐藏层的层数根据需要而定,没有明确理论推导说明到底多少层合适卷积神经网络,在原来多层的基础上加入更加有效的特征学习部分,具体就是在全连接层之前加上卷积层和池化层。
2024-04-19 19:40:38 663 1
原创 用全连接对手写数字识别案例(附解决TensorFlow2.x没有examples问题)
数据集直接调用可能出现问题,建议从官网直接下载下来,下载存在这四个文件55000行训练数据集(minst.train)和10000行测试数据集(mnist.test)。每一个数据单元分为两部分:一张含手写数字的图片和一个对应的标签 训练数据集图片mnist.train.images,训练数据集的标签是mnist.train.labels特征值:黑白图片,每张包含28像素*28像素。
2024-04-17 21:47:33 1435 2
原创 神经网络基础原理
每个圆圈代表一个神经元,隐藏层和输出层的神经元由输入的数据计算后输出,输出层的神经元只是输出。感知机是一种基础的分类模型,使用激活函数sign,感知机也有连接的权重和偏置。或问题:两个特征一个为1,结果为1。减少损失,需要进行优化,提高对应目标值为1的位置输出概率大小。计算logits和labels之间的交叉损失熵。人工神经网络(ANN),简称神经网络(NN)。可以解决与问题:两个特征同时为1,结果为1。3)最后的输出结果对应的层称之为全连接层。labels:标签值(真实值)计算张量的尺寸的元素平均值。
2024-04-16 19:42:22 444 1
原创 TensorFlow文件读取 --TFRecords文件
●tf. train. Example协议内存块(protocol buffer)(协议内存块包含了字段 Features )3)将协议内存块序列化为字符串,并且通过 tf.python_io.TFRecordWriter写入到TFRecords文件。features: dict字典数据,键为读取的名字,值为FixedLenFeature。features: tf.train.Features类型的特征实例。是一种二进制文件,能够很好的利用内存,更方便复制和移动,并且不需要单独的标签文件。
2024-04-15 17:22:59 958 1
原创 TensorFlow文件读取 ---二进制文件存取及案例(代码)
二进制版本数据文件:data_batch_1.bin,data_batch_2.bin,..data_batch_5.bin以及test_batch.bin。每3073个字节是一个样本:1个目标值(图像标签)+3072像素(前1024个字节是红色通道,下1024是绿色通道,后1024是蓝色)由10个类的60000个32*32彩色图像组成,每个类又6000个图像,有500000个训练像素和10000个测试图像。一个样本image(3072字节 = 1024r +1024g +1024b)
2024-04-13 10:00:00 737
原创 TensorFlow文件读取图片数据案例(100张狗的图片)
多张图片 shape = (,batch,height,width,channels)灰度图[长,宽,1]:每一个像素点[0,255]的图 数越大越白。特征抽取 :图片 (三维数组 (图片长度、图片宽度、图片通道数))彩色图[长,宽,3]:每个像素点[0,255] 有3个通道。一张图片 shape = (height,width,channels)2)样本和样本形状不统一,没办法进行批量操作和运算。2)读取与解码 ---使样本的形状和类型统一。图片像素量太大,适当减少像素数量。
2024-04-12 10:00:00 675
原创 案例:TensorFlow实现线性回归
学习率越高,训练到较好结果步数越小,但是过大会出现梯度爆炸现象。2)加载:saver.restore(sess,path)1)保存:saver.save(sess,path)y_ _true 目标值(100, 1)x特征值形状(100,1)5)将summary对象写入事件文件。假定x和y之间的关系满足。调用tensorboard显示。4)每次迭代运行一次合并变量。更直观的看到变量的变化。
2024-04-10 10:00:00 1121 1
原创 然后是几点(C语言)
3)终止时间转换为四位数字表示:上一步得到的终止时间除以60以及与60取余分别得到时分 /60+%60。%100 --得到后面分钟。要将时间都转换为分钟 小时*60+分钟。1)给出四位起始时间 /100 ---得到前两位 小时。2)终止时间 :起始时间+流逝时间。
2024-04-09 22:09:45 620
原创 TensorFlow框架之张量变量
tf.truncated_ normal(shape, mean=0.0, stddev= 1.0, dtype-tf.float32, seed=None, name=None) ----创建符合正态分布。tf.zeros(shape, dtype-=t.float32, name: =None) ---创建所有元素设置为0。[5,6,7]] ----2阶张量。2)两个重要的属性 :type ---数据类型 shape ---形状(阶)
2024-04-09 14:45:12 843
原创 TensorFlow框架之会话
2)tf.InteractiveSession ---用于交互式上下文中的TensorFlow,例如shell。●target: 如果将此参数留空(默认设置),会话将仅使用本地计算机中的设备。使用tf.operation.eval()也可运行operation,但需要在会话中运行。需要调用tf.Session.close会话中的方法或将会话作用于上下文管理器。●graph: 默认情况下,新的tf.Session将绑定到当前的默认图。包含两种开启方式:1)tf.Session ---用于完整的程序中。
2024-04-08 21:05:48 555
原创 TensorFlow结构分析及图
Tensorflow 2.0删除了tf.Session() 改为tf.compat.v1.Session 在此之前加上 tf.compat.v1.disable_eager_execution()2)查看属性 op 、sess都含有graph属性,默认在一张图中 --- .graph。生成张量的指令名称 ---一张图一个指令名称(如上图中const const_1)数据(张量)与操作(节点)的执行步骤被描述成一个图。使用会话执行构建好的图中操作。
2024-04-07 19:48:22 1166 1
原创 机器学习与深度学习区别
2)深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,将数据从一层传递到另一层来构建更复杂的模型。2)训练深度神经网络需要大量的算力 ----需要强大GPU服务器来进行计算、全面管理的分布式训练与预测服务(如谷歌TensorFlow云机器学习平台)机器学习需要的执行时间远少于深度学习,深度学习参数往往很庞大,需要通过大量数据的多次优化来训练参数。机器学习 -----朴素贝叶斯、决策树等。1)深度学习需要大量的训练数据集。深度学习 -----神经网络。
2024-04-07 16:34:48 150
原创 Sklearn数据集获取划分及鸢尾花实例
大数据集:sklearn.datasets.fetch_20newsgroups(data_home=None.subset='train')sklearn.datasets.load_boston() ----(加载并返回波士顿房价数据集)2)data:特征数据数组,是[n_samples *n_features]的二维numpy.ndarray数组。例:小数据集:sklearn.datasets.load_iris() -----(加载并返回鸢尾花数据集)-----(20个新闻组数据集)
2024-04-02 22:33:03 533 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人