ABAQUS几何非线性问题:薄板大变形
在本案例中,笔者将从几何非线性角度分析一个线性材料的薄板在发生大尺度变形情况下的非线性问题。另外向大家简单介绍ABAQUS在求解非线性问题时所采用的方法,以及分析步、增量步以及迭代的内部逻辑。另外对于该案例中的薄板,还涉及到ABAQUS中材料方向的定义。
1:几何非线性
几何非线性发生在结构位移的大小影响到结构响应的情形。
大挠度或转动
“ 突然翻转 ”
初应力或载荷硬化
例如端部受竖向载荷的悬臂梁:若端部挠度较小,分析时可以认为是近似线性的。然而若端部的挠度较大,结构的形状乃至于其刚度都会发生改变。另外,若载荷不能保持与梁垂直,载荷对结构的作用将发生明显的改变。
然而,并非位移相对于结构尺寸很大时,几何非线性才显得重要。例如,一块很大的平板在所受压力下的 “ 突然翻转 ” 现象,此时位移的量值相对于板的尺寸来说很小,但仍存在严重的几何非线性。
2:分析步
既然已经需要考虑几何非线性,那么在ABAQUS中如何设置才能将其包含于分析中呢?在定义分析步时,需要将几何非线性打开。对于分析步、增量步和迭代的具体内容和含义,我们在这里不在赘述,有兴趣的同学可以去看一下笔者的上一篇文章:Abaqus学习记录:分析步、增量步和迭代。
ABAQUS使用 Newton-Raphson 法来求解非线性问题。在非线性分析中的求解不能像线性问题中那样,只求解一组方程即可,而是逐步施加给定的载荷,以增量的形式趋于最终解,即一个分析步中施加的总载荷被分解为许多小的增量,用户需要指定初始载荷增量,初始载荷增量不能直接输入数值,而是通过指定初始时间增量 Δ T i n i t i a l \Delta T_{initial} ΔTinitial 和分析步的总时间 Δ T t o t a l \Delta T_{total} ΔTtotal 来确定。
初始载荷增量 = Δ T i n i t i a l Δ T t o t a l × 载荷值 初始载荷增量=\frac{\Delta T_{initial}}{\Delta T_{total}}\times 载荷值 初始载荷增量=ΔTtotalΔTinitial×载荷值
在 “ 静力通用 ” 分析步中,时间并没有物理含义,默认为 “1” 即可
但对大多数分析来说,初始时间增量的大小介于总分析步时间的 5%~10% 之间通常是足够的
若用户未提供初始增量大小,ABAQUS 会将该分析步的全部载荷都作为第一增量步载荷来施加,这样在高度非线性的问题中 ABAQUS 不得不反复减小增量大小,从而导致CPU 时间的浪费
本案例中初始时间增量为 0.1
3:案例分析
本案例将分析一个线性材料的薄板由于发生大尺度变形而导致非线性的问题。如下图所示:左端固定,右端被限制在轨道上仅能沿平行于平板的轴向移动。该斜板是各向同性线弹性材料,
E
=
30
×
1
0
9
P
a
E =30\times 10^9 Pa
E=30×109Pa ,
μ
=
0.3
\mu = 0.3
μ=0.3 ,上表面承受压力
P
=
20.0
P
a
P=20.0Pa
P=20.0Pa
具体建模过程不在赘述,为了保证求解的准确性,需要注意的是:
在赋予平板材料属性时,需要建立局部材料方向
在平板右端施加约束时,需要选用建立的局部坐标
3.1:建立局部材料方向
在ABAQUS中默认的局部材料的1和2方向位于壳面内,默认的局部1方向是整体坐标x轴在壳面上的投影。局部2方向垂直于位于壳面中的局部1方向。因此,局部1方向、2方向和壳体表面的正法线3方向符合右手定则。在此案例中,平板与1方向具有30°的夹角,故不能再使用默认的材料方向,需要建立一个1方向与平板轴向平行的局部材料方向。
在Property模块中,首先建立如下图黄色的基准坐标系:
随后从主菜单中选择指派(Assign)➡材料方向(Material Orientation)命令,并选择整个部件作为局部材料方向的有效区域,在视图中选择刚刚建立的基准坐标系,并选择Axis-3作为壳体法线方向,点击OK,完成局部材料方向的创建。
可以从主菜单中选择Tool > Query 进行材料方向的查看
3.2 :在右端施加约束
在Load模块点击 Create Boundary Condition,定义分析步的类型为Displacement/Rotation,选择平板右边界,CSYS选择为刚刚建立的基准坐标系,并约束除U1外所有的自由度。
3.3:仿真结果
-
完成分析后,我们可以在monitor中看到迭代了6步后完成了
-
在这里仅仅展示平板的位移云图。可以看到,平板右端的位移是与我们示意图中轨道一致的。